Skip to content

AsyncIndex

AsyncIndex Usage

The AsyncIndex is the the same as the Index, but gives asyncronous methods to work with, and and should be used when using the AsyncClient. When you create a new index with the AsyncClient it will create an AsyncIndex instance.

AsyncIndex API

Bases: _BaseIndex

AsyncIndex class gives access to all indexes routes and child routes.

https://docs.meilisearch.com/reference/api/indexes.html

Source code in meilisearch_python_sdk/index.py
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
class AsyncIndex(_BaseIndex):
    """AsyncIndex class gives access to all indexes routes and child routes.

    https://docs.meilisearch.com/reference/api/indexes.html
    """

    def __init__(
        self,
        http_client: AsyncClient,
        uid: str,
        primary_key: str | None = None,
        created_at: str | datetime | None = None,
        updated_at: str | datetime | None = None,
        plugins: AsyncIndexPlugins | None = None,
        json_handler: BuiltinHandler | OrjsonHandler | UjsonHandler | None = None,
        *,
        hits_type: Any = JsonDict,
    ):
        """Class initializer.

        Args:
            http_client: An instance of the AsyncClient. This automatically gets passed by the
                AsyncClient when creating and AsyncIndex instance.
            uid: The index's unique identifier.
            primary_key: The primary key of the documents. Defaults to None.
            created_at: The date and time the index was created. Defaults to None.
            updated_at: The date and time the index was last updated. Defaults to None.
            plugins: Optional plugins can be provided to extend functionality.
            json_handler: The module to use for json operations. The options are BuiltinHandler
                (uses the json module from the standard library), OrjsonHandler (uses orjson), or
                UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding
                extra needs to be included. Default: BuiltinHandler.
            hits_type: Allows for a custom type to be passed to use for hits. Defaults to
                JsonDict
        """
        super().__init__(
            uid=uid,
            primary_key=primary_key,
            created_at=created_at,
            updated_at=updated_at,
            json_handler=json_handler,
            hits_type=hits_type,
        )
        self.http_client = http_client
        self._http_requests = AsyncHttpRequests(http_client, json_handler=self._json_handler)
        self.plugins = plugins

    @cached_property
    def _concurrent_add_documents_plugins(self) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.add_documents_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.add_documents_plugins if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_add_documents_plugins(self) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.add_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.add_documents_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_add_documents_plugins(self) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.add_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.add_documents_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_delete_all_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_all_documents_plugins:
            return None

        plugins = [
            plugin
            for plugin in self.plugins.delete_all_documents_plugins
            if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_delete_all_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_all_documents_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.delete_all_documents_plugins if plugin.POST_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_delete_all_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_all_documents_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.delete_all_documents_plugins if plugin.PRE_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_delete_document_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_document_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.delete_document_plugins if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_delete_document_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_document_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.delete_document_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_delete_document_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_document_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.delete_document_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_delete_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.delete_documents_plugins if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_delete_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.delete_documents_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_delete_documents_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.delete_documents_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_delete_documents_by_filter_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_by_filter_plugins:
            return None

        plugins = [
            plugin
            for plugin in self.plugins.delete_documents_by_filter_plugins
            if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_delete_documents_by_filter_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_by_filter_plugins:
            return None

        plugins = [
            plugin
            for plugin in self.plugins.delete_documents_by_filter_plugins
            if plugin.POST_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_delete_documents_by_filter_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.delete_documents_by_filter_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.delete_documents_by_filter_plugins if plugin.PRE_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_facet_search_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.facet_search_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.facet_search_plugins if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_facet_search_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.facet_search_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.facet_search_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_facet_search_plugins(self) -> list[AsyncPlugin] | None:
        if not self.plugins or not self.plugins.facet_search_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.facet_search_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_search_plugins(self) -> list[AsyncPlugin | AsyncPostSearchPlugin] | None:
        if not self.plugins or not self.plugins.search_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.search_plugins if plugin.CONCURRENT_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_search_plugins(self) -> list[AsyncPlugin | AsyncPostSearchPlugin] | None:
        if not self.plugins or not self.plugins.search_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.search_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_search_plugins(self) -> list[AsyncPlugin | AsyncPostSearchPlugin] | None:
        if not self.plugins or not self.plugins.search_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.search_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _concurrent_update_documents_plugins(
        self,
    ) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.update_documents_plugins:
            return None

        plugins = [
            plugin for plugin in self.plugins.update_documents_plugins if plugin.CONCURRENT_EVENT
        ]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _post_update_documents_plugins(self) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.update_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.update_documents_plugins if plugin.POST_EVENT]

        if not plugins:
            return None

        return plugins

    @cached_property
    def _pre_update_documents_plugins(self) -> list[AsyncPlugin | AsyncDocumentPlugin] | None:
        if not self.plugins or not self.plugins.update_documents_plugins:
            return None

        plugins = [plugin for plugin in self.plugins.update_documents_plugins if plugin.PRE_EVENT]

        if not plugins:
            return None

        return plugins

    async def delete(self) -> TaskInfo:
        """Deletes the index.

        Returns:
            The details of the task.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete()
        """
        response = await self._http_requests.delete(self._base_url_with_uid)
        return TaskInfo(**response.json())

    async def delete_if_exists(self) -> bool:
        """Delete the index if it already exists.

        Returns:
            True if the index was deleted or False if not.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_if_exists()
        """
        response = await self.delete()
        status = await async_wait_for_task(
            self.http_client, response.task_uid, timeout_in_ms=100000
        )
        if status.status == "succeeded":
            return True

        return False

    async def update(self, primary_key: str) -> Self:
        """Update the index primary key.

        Args:
            primary_key: The primary key of the documents.

        Returns:
            An instance of the AsyncIndex with the updated information.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     updated_index = await index.update()
        """
        payload = {"primaryKey": primary_key}
        response = await self._http_requests.patch(self._base_url_with_uid, payload)
        await async_wait_for_task(
            self.http_client, response.json()["taskUid"], timeout_in_ms=100000
        )
        index_response = await self._http_requests.get(f"{self._base_url_with_uid}")
        self.primary_key = index_response.json()["primaryKey"]
        return self

    async def fetch_info(self) -> Self:
        """Gets the infromation about the index.

        Returns:
            An instance of the AsyncIndex containing the retrieved information.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     index_info = await index.fetch_info()
        """
        response = await self._http_requests.get(self._base_url_with_uid)
        index_dict = response.json()
        self._set_fetch_info(
            index_dict["primaryKey"], index_dict["createdAt"], index_dict["updatedAt"]
        )
        return self

    async def get_primary_key(self) -> str | None:
        """Get the primary key.

        Returns:
            The primary key for the documents in the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     primary_key = await index.get_primary_key()
        """
        info = await self.fetch_info()
        return info.primary_key

    @classmethod
    async def create(
        cls,
        http_client: AsyncClient,
        uid: str,
        primary_key: str | None = None,
        *,
        settings: MeilisearchSettings | None = None,
        wait: bool = True,
        timeout_in_ms: int | None = None,
        plugins: AsyncIndexPlugins | None = None,
        json_handler: BuiltinHandler | OrjsonHandler | UjsonHandler | None = None,
        hits_type: Any = JsonDict,
    ) -> Self:
        """Creates a new index.

        In general this method should not be used directly and instead the index should be created
        through the `Client`.

        Args:
            http_client: An instance of the AsyncClient. This automatically gets passed by the
                Client when creating an AsyncIndex instance.
            uid: The index's unique identifier.
            primary_key: The primary key of the documents. Defaults to None.
            settings: Settings for the index. The settings can also be updated independently of
                creating the index. The advantage to updating them here is updating the settings after
                adding documents will cause the documents to be re-indexed. Because of this it will be
                faster to update them before adding documents. Defaults to None (i.e. default
                Meilisearch index settings).
            wait: If set to True and settings are being updated, the index will be returned after
                the settings update has completed. If False it will not wait for settings to complete.
                Default: True
            timeout_in_ms: Amount of time in milliseconds to wait before raising a
                MeilisearchTimeoutError. `None` can also be passed to wait indefinitely. Be aware that
                if the `None` option is used the wait time could be very long. Defaults to None.
            plugins: Optional plugins can be provided to extend functionality.
            json_handler: The module to use for json operations. The options are BuiltinHandler
                (uses the json module from the standard library), OrjsonHandler (uses orjson), or
                UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding
                extra needs to be included. Default: BuiltinHandler.
            hits_type: Allows for a custom type to be passed to use for hits. Defaults to
                JsonDict

        Returns:
            An instance of AsyncIndex containing the information of the newly created index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = await index.create(client, "movies")
        """
        if not primary_key:
            payload = {"uid": uid}
        else:
            payload = {"primaryKey": primary_key, "uid": uid}

        url = "indexes"
        handler = json_handler if json_handler else BuiltinHandler()
        http_request = AsyncHttpRequests(http_client, json_handler=handler)
        response = await http_request.post(url, payload)
        await async_wait_for_task(
            http_client,
            response.json()["taskUid"],
            timeout_in_ms=timeout_in_ms,
        )

        index_response = await http_request.get(f"{url}/{uid}")
        index_dict = index_response.json()
        index = cls(
            http_client=http_client,
            uid=index_dict["uid"],
            primary_key=index_dict["primaryKey"],
            created_at=index_dict["createdAt"],
            updated_at=index_dict["updatedAt"],
            plugins=plugins,
            json_handler=json_handler,
            hits_type=hits_type,
        )

        if settings:
            settings_task = await index.update_settings(settings)
            if wait:
                await async_wait_for_task(
                    http_client, settings_task.task_uid, timeout_in_ms=timeout_in_ms
                )

        return index

    async def get_stats(self) -> IndexStats:
        """Get stats of the index.

        Returns:
            Stats of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     stats = await index.get_stats()
        """
        response = await self._http_requests.get(self._stats_url)

        return IndexStats(**response.json())

    async def search(
        self,
        query: str | None = None,
        *,
        offset: int = 0,
        limit: int = 20,
        filter: Filter | None = None,
        facets: list[str] | None = None,
        attributes_to_retrieve: list[str] | None = None,
        attributes_to_crop: list[str] | None = None,
        crop_length: int = 200,
        attributes_to_highlight: list[str] | None = None,
        sort: list[str] | None = None,
        show_matches_position: bool = False,
        highlight_pre_tag: str = "<em>",
        highlight_post_tag: str = "</em>",
        crop_marker: str = "...",
        matching_strategy: Literal["all", "last", "frequency"] = "last",
        hits_per_page: int | None = None,
        page: int | None = None,
        attributes_to_search_on: list[str] | None = None,
        distinct: str | None = None,
        show_ranking_score: bool = False,
        show_ranking_score_details: bool = False,
        ranking_score_threshold: float | None = None,
        vector: list[float] | None = None,
        hybrid: Hybrid | None = None,
        locales: list[str] | None = None,
    ) -> SearchResults:
        """Search the index.

        Args:
            query: String containing the word(s) to search
            offset: Number of documents to skip. Defaults to 0.
            limit: Maximum number of documents returned. Defaults to 20.
            filter: Filter queries by an attribute value. Defaults to None.
            facets: Facets for which to retrieve the matching count. Defaults to None.
            attributes_to_retrieve: Attributes to display in the returned documents.
                Defaults to ["*"].
            attributes_to_crop: Attributes whose values have to be cropped. Defaults to None.
            crop_length: The maximun number of words to display. Defaults to 200.
            attributes_to_highlight: Attributes whose values will contain highlighted matching terms.
                Defaults to None.
            sort: Attributes by which to sort the results. Defaults to None.
            show_matches_position: Defines whether an object that contains information about the
                matches should be returned or not. Defaults to False.
            highlight_pre_tag: The opening tag for highlighting text. Defaults to <em>.
            highlight_post_tag: The closing tag for highlighting text. Defaults to </em>
            crop_marker: Marker to display when the number of words excedes the `crop_length`.
                Defaults to ...
            matching_strategy: Specifies the matching strategy Meilisearch should use. Defaults to
                `last`.
            hits_per_page: Sets the number of results returned per page.
            page: Sets the specific results page to fetch.
            attributes_to_search_on: List of field names. Allow search over a subset of searchable
                attributes without modifying the index settings. Defaults to None.
            distinct: If set the distinct value will return at most one result for the
                filterable attribute. Note that a filterable attributes must be set for this work.
                Defaults to None.
            show_ranking_score: If set to True the ranking score will be returned with each document
                in the search. Defaults to False.
            show_ranking_score_details: If set to True the ranking details will be returned with
                each document in the search. Defaults to False. Note: This parameter can only be
                used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order
                to use this feature in Meilisearch v1.3.0 you first need to enable the feature by
                sending a PATCH request to /experimental-features with { "scoreDetails": true }.
                Because this feature is experimental it may be removed or updated causing breaking
                changes in this library without a major version bump so use with caution. This
                feature became stable in Meiliseach v1.7.0.
            ranking_score_threshold: If set, no document whose _rankingScore is under the
                rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
                to None.
            vector: List of vectors for vector search. Defaults to None. Note: This parameter can
                only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0.
                In order to use this feature in Meilisearch v1.3.0 you first need to enable the
                feature by sending a PATCH request to /experimental-features with
                { "vectorStore": true }. Because this feature is experimental it may be removed or
                updated causing breaking changes in this library without a major version bump so use
                with caution.
            hybrid: Hybrid search information. Defaults to None. Note: This parameter can
                only be used with Meilisearch >= v1.6.0, and is experimental in Meilisearch v1.6.0.
                In order to use this feature in Meilisearch v1.6.0 you first need to enable the
                feature by sending a PATCH request to /experimental-features with
                { "vectorStore": true }. Because this feature is experimental it may be removed or
                updated causing breaking changes in this library without a major version bump so use
                with caution.
            locales: Specifies the languages for the search. This parameter can only be used with
                Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

        Returns:
            Results of the search

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     search_results = await index.search("Tron")
        """
        if ranking_score_threshold:
            _validate_ranking_score_threshold(ranking_score_threshold)

        body = _process_search_parameters(
            q=query,
            offset=offset,
            limit=limit,
            filter=filter,
            facets=facets,
            attributes_to_retrieve=attributes_to_retrieve,
            attributes_to_crop=attributes_to_crop,
            crop_length=crop_length,
            attributes_to_highlight=attributes_to_highlight,
            sort=sort,
            show_matches_position=show_matches_position,
            highlight_pre_tag=highlight_pre_tag,
            highlight_post_tag=highlight_post_tag,
            crop_marker=crop_marker,
            matching_strategy=matching_strategy,
            hits_per_page=hits_per_page,
            page=page,
            attributes_to_search_on=attributes_to_search_on,
            distinct=distinct,
            show_ranking_score=show_ranking_score,
            show_ranking_score_details=show_ranking_score_details,
            vector=vector,
            hybrid=hybrid,
            ranking_score_threshold=ranking_score_threshold,
            locales=locales,
        )
        search_url = f"{self._base_url_with_uid}/search"

        if self._pre_search_plugins:
            await AsyncIndex._run_plugins(
                self._pre_search_plugins,
                AsyncEvent.PRE,
                query=query,
                offset=offset,
                limit=limit,
                filter=filter,
                facets=facets,
                attributes_to_retrieve=attributes_to_retrieve,
                attributes_to_crop=attributes_to_crop,
                crop_length=crop_length,
                attributes_to_highlight=attributes_to_highlight,
                sort=sort,
                show_matches_position=show_matches_position,
                highlight_pre_tag=highlight_pre_tag,
                highlight_post_tag=highlight_post_tag,
                crop_marker=crop_marker,
                matching_strategy=matching_strategy,
                hits_per_page=hits_per_page,
                page=page,
                attributes_to_search_on=attributes_to_search_on,
                distinct=distinct,
                show_ranking_score=show_ranking_score,
                show_ranking_score_details=show_ranking_score_details,
                vector=vector,
                hybrid=hybrid,
            )

        if self._concurrent_search_plugins:
            if not use_task_groups():
                concurrent_tasks: Any = []
                for plugin in self._concurrent_search_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        concurrent_tasks.append(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                query=query,
                                offset=offset,
                                limit=limit,
                                filter=filter,
                                facets=facets,
                                attributes_to_retrieve=attributes_to_retrieve,
                                attributes_to_crop=attributes_to_crop,
                                crop_length=crop_length,
                                attributes_to_highlight=attributes_to_highlight,
                                sort=sort,
                                show_matches_position=show_matches_position,
                                highlight_pre_tag=highlight_pre_tag,
                                highlight_post_tag=highlight_post_tag,
                                crop_marker=crop_marker,
                                matching_strategy=matching_strategy,
                                hits_per_page=hits_per_page,
                                page=page,
                                attributes_to_search_on=attributes_to_search_on,
                                distinct=distinct,
                                show_ranking_score=show_ranking_score,
                                show_ranking_score_details=show_ranking_score_details,
                                vector=vector,
                            )
                        )

                concurrent_tasks.append(self._http_requests.post(search_url, body=body))

                responses = await asyncio.gather(*concurrent_tasks)
                result = SearchResults[self.hits_type](**responses[-1].json())  # type: ignore[name-defined]
                if self._post_search_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_search_plugins, AsyncEvent.POST, search_results=result
                    )
                    if post.get("search_result"):
                        result = post["search_result"]

                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_search_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tg.create_task(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                query=query,
                                offset=offset,
                                limit=limit,
                                filter=filter,
                                facets=facets,
                                attributes_to_retrieve=attributes_to_retrieve,
                                attributes_to_crop=attributes_to_crop,
                                crop_length=crop_length,
                                attributes_to_highlight=attributes_to_highlight,
                                sort=sort,
                                show_matches_position=show_matches_position,
                                highlight_pre_tag=highlight_pre_tag,
                                highlight_post_tag=highlight_post_tag,
                                crop_marker=crop_marker,
                                matching_strategy=matching_strategy,
                                hits_per_page=hits_per_page,
                                page=page,
                                attributes_to_search_on=attributes_to_search_on,
                                distinct=distinct,
                                show_ranking_score=show_ranking_score,
                                show_ranking_score_details=show_ranking_score_details,
                                vector=vector,
                            )
                        )

                response_coroutine = tg.create_task(self._http_requests.post(search_url, body=body))

            response = await response_coroutine
            result = SearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]
            if self._post_search_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_search_plugins, AsyncEvent.POST, search_results=result
                )
                if post.get("search_result"):
                    result = post["search_result"]

            return result

        response = await self._http_requests.post(search_url, body=body)
        result = SearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]

        if self._post_search_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_search_plugins, AsyncEvent.POST, search_results=result
            )
            if post.get("search_result"):
                result = post["search_result"]

        return result

    async def facet_search(
        self,
        query: str | None = None,
        *,
        facet_name: str,
        facet_query: str,
        offset: int = 0,
        limit: int = 20,
        filter: Filter | None = None,
        facets: list[str] | None = None,
        attributes_to_retrieve: list[str] | None = None,
        attributes_to_crop: list[str] | None = None,
        crop_length: int = 200,
        attributes_to_highlight: list[str] | None = None,
        sort: list[str] | None = None,
        show_matches_position: bool = False,
        highlight_pre_tag: str = "<em>",
        highlight_post_tag: str = "</em>",
        crop_marker: str = "...",
        matching_strategy: Literal["all", "last", "frequency"] = "last",
        hits_per_page: int | None = None,
        page: int | None = None,
        attributes_to_search_on: list[str] | None = None,
        show_ranking_score: bool = False,
        show_ranking_score_details: bool = False,
        ranking_score_threshold: float | None = None,
        vector: list[float] | None = None,
        locales: list[str] | None = None,
    ) -> FacetSearchResults:
        """Search the index.

        Args:
            query: String containing the word(s) to search
            facet_name: The name of the facet to search
            facet_query: The facet search value
            offset: Number of documents to skip. Defaults to 0.
            limit: Maximum number of documents returned. Defaults to 20.
            filter: Filter queries by an attribute value. Defaults to None.
            facets: Facets for which to retrieve the matching count. Defaults to None.
            attributes_to_retrieve: Attributes to display in the returned documents.
                Defaults to ["*"].
            attributes_to_crop: Attributes whose values have to be cropped. Defaults to None.
            crop_length: The maximun number of words to display. Defaults to 200.
            attributes_to_highlight: Attributes whose values will contain highlighted matching terms.
                Defaults to None.
            sort: Attributes by which to sort the results. Defaults to None.
            show_matches_position: Defines whether an object that contains information about the
                matches should be returned or not. Defaults to False.
            highlight_pre_tag: The opening tag for highlighting text. Defaults to <em>.
            highlight_post_tag: The closing tag for highlighting text. Defaults to </em>
            crop_marker: Marker to display when the number of words excedes the `crop_length`.
                Defaults to ...
            matching_strategy: Specifies the matching strategy Meilisearch should use. Defaults to
                `last`.
            hits_per_page: Sets the number of results returned per page.
            page: Sets the specific results page to fetch.
            attributes_to_search_on: List of field names. Allow search over a subset of searchable
                attributes without modifying the index settings. Defaults to None.
            show_ranking_score: If set to True the ranking score will be returned with each document
                in the search. Defaults to False.
            show_ranking_score_details: If set to True the ranking details will be returned with
                each document in the search. Defaults to False. Note: This parameter can only be
                used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order
                to use this feature in Meilisearch v1.3.0 you first need to enable the feature by
                sending a PATCH request to /experimental-features with { "scoreDetails": true }.
                Because this feature is experimental it may be removed or updated causing breaking
                changes in this library without a major version bump so use with caution. This
                feature became stable in Meiliseach v1.7.0.
            ranking_score_threshold: If set, no document whose _rankingScore is under the
                rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
                to None.
            vector: List of vectors for vector search. Defaults to None. Note: This parameter can
                only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0.
                In order to use this feature in Meilisearch v1.3.0 you first need to enable the
                feature by sending a PATCH request to /experimental-features with
                { "vectorStore": true }. Because this feature is experimental it may be removed or
                updated causing breaking changes in this library without a major version bump so use
                with caution.
            locales: Specifies the languages for the search. This parameter can only be used with
                Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

        Returns:
            Results of the search

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     search_results = await index.search(
            >>>         "Tron",
            >>>         facet_name="genre",
            >>>         facet_query="Sci-fi"
            >>>     )
        """
        if ranking_score_threshold:
            _validate_ranking_score_threshold(ranking_score_threshold)

        body = _process_search_parameters(
            q=query,
            facet_name=facet_name,
            facet_query=facet_query,
            offset=offset,
            limit=limit,
            filter=filter,
            facets=facets,
            attributes_to_retrieve=attributes_to_retrieve,
            attributes_to_crop=attributes_to_crop,
            crop_length=crop_length,
            attributes_to_highlight=attributes_to_highlight,
            sort=sort,
            show_matches_position=show_matches_position,
            highlight_pre_tag=highlight_pre_tag,
            highlight_post_tag=highlight_post_tag,
            crop_marker=crop_marker,
            matching_strategy=matching_strategy,
            hits_per_page=hits_per_page,
            page=page,
            attributes_to_search_on=attributes_to_search_on,
            show_ranking_score=show_ranking_score,
            show_ranking_score_details=show_ranking_score_details,
            ranking_score_threshold=ranking_score_threshold,
            vector=vector,
            locales=locales,
        )
        search_url = f"{self._base_url_with_uid}/facet-search"

        if self._pre_facet_search_plugins:
            await AsyncIndex._run_plugins(
                self._pre_facet_search_plugins,
                AsyncEvent.PRE,
                query=query,
                offset=offset,
                limit=limit,
                filter=filter,
                facets=facets,
                attributes_to_retrieve=attributes_to_retrieve,
                attributes_to_crop=attributes_to_crop,
                crop_length=crop_length,
                attributes_to_highlight=attributes_to_highlight,
                sort=sort,
                show_matches_position=show_matches_position,
                highlight_pre_tag=highlight_pre_tag,
                highlight_post_tag=highlight_post_tag,
                crop_marker=crop_marker,
                matching_strategy=matching_strategy,
                hits_per_page=hits_per_page,
                page=page,
                attributes_to_search_on=attributes_to_search_on,
                show_ranking_score=show_ranking_score,
                show_ranking_score_details=show_ranking_score_details,
                ranking_score_threshold=ranking_score_threshold,
                vector=vector,
            )

        if self._concurrent_facet_search_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_facet_search_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tasks.append(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                query=query,
                                offset=offset,
                                limit=limit,
                                filter=filter,
                                facets=facets,
                                attributes_to_retrieve=attributes_to_retrieve,
                                attributes_to_crop=attributes_to_crop,
                                crop_length=crop_length,
                                attributes_to_highlight=attributes_to_highlight,
                                sort=sort,
                                show_matches_position=show_matches_position,
                                highlight_pre_tag=highlight_pre_tag,
                                highlight_post_tag=highlight_post_tag,
                                crop_marker=crop_marker,
                                matching_strategy=matching_strategy,
                                hits_per_page=hits_per_page,
                                page=page,
                                attributes_to_search_on=attributes_to_search_on,
                                show_ranking_score=show_ranking_score,
                                show_ranking_score_details=show_ranking_score_details,
                                ranking_score_threshold=ranking_score_threshold,
                                vector=vector,
                            )
                        )

                tasks.append(self._http_requests.post(search_url, body=body))
                responses = await asyncio.gather(*tasks)
                result = FacetSearchResults(**responses[-1].json())
                if self._post_facet_search_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_facet_search_plugins, AsyncEvent.POST, result=result
                    )
                    if isinstance(post["generic_result"], FacetSearchResults):
                        result = post["generic_result"]

                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_facet_search_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tg.create_task(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                query=query,
                                offset=offset,
                                limit=limit,
                                filter=filter,
                                facets=facets,
                                attributes_to_retrieve=attributes_to_retrieve,
                                attributes_to_crop=attributes_to_crop,
                                crop_length=crop_length,
                                attributes_to_highlight=attributes_to_highlight,
                                sort=sort,
                                show_matches_position=show_matches_position,
                                highlight_pre_tag=highlight_pre_tag,
                                highlight_post_tag=highlight_post_tag,
                                crop_marker=crop_marker,
                                matching_strategy=matching_strategy,
                                hits_per_page=hits_per_page,
                                page=page,
                                attributes_to_search_on=attributes_to_search_on,
                                show_ranking_score=show_ranking_score,
                                show_ranking_score_details=show_ranking_score_details,
                                ranking_score_threshold=ranking_score_threshold,
                                vector=vector,
                            )
                        )

                response_coroutine = tg.create_task(self._http_requests.post(search_url, body=body))

            response = await response_coroutine
            result = FacetSearchResults(**response.json())
            if self._post_facet_search_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_facet_search_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post["generic_result"], FacetSearchResults):
                    result = post["generic_result"]

            return result

        response = await self._http_requests.post(search_url, body=body)
        result = FacetSearchResults(**response.json())
        if self._post_facet_search_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_facet_search_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], FacetSearchResults):
                result = post["generic_result"]

        return result

    async def search_similar_documents(
        self,
        id: str,
        *,
        offset: int | None = None,
        limit: int | None = None,
        filter: str | None = None,
        embedder: str = "default",
        attributes_to_retrieve: list[str] | None = None,
        show_ranking_score: bool = False,
        show_ranking_score_details: bool = False,
        ranking_score_threshold: float | None = None,
    ) -> SimilarSearchResults:
        """Search the index.

        Args:
            id: The id for the target document that is being used to find similar documents.
            offset: Number of documents to skip. Defaults to 0.
            limit: Maximum number of documents returned. Defaults to 20.
            filter: Filter queries by an attribute value. Defaults to None.
            embedder: The vector DB to use for the search.
            attributes_to_retrieve: Attributes to display in the returned documents.
                Defaults to ["*"].
            show_ranking_score: If set to True the ranking score will be returned with each document
                in the search. Defaults to False.
            show_ranking_score_details: If set to True the ranking details will be returned with
                each document in the search. Defaults to False.
            ranking_score_threshold: If set, no document whose _rankingScore is under the
                rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
                to None.

        Returns:
            Results of the search

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     search_results = await index.search_similar_documents("123")
        """
        payload = {
            "id": id,
            "filter": filter,
            "embedder": embedder,
            "attributesToRetrieve": attributes_to_retrieve,
            "showRankingScore": show_ranking_score,
            "showRankingScoreDetails": show_ranking_score_details,
            "rankingScoreThreshold": ranking_score_threshold,
        }

        if offset:
            payload["offset"] = offset

        if limit:
            payload["limit"] = limit

        response = await self._http_requests.post(
            f"{self._base_url_with_uid}/similar", body=payload
        )

        return SimilarSearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]

    async def get_document(self, document_id: str) -> JsonDict:
        """Get one document with given document identifier.

        Args:
            document_id: Unique identifier of the document.

        Returns:
            The document information

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     document = await index.get_document("1234")
        """
        response = await self._http_requests.get(f"{self._documents_url}/{document_id}")

        return response.json()

    async def get_documents(
        self,
        *,
        offset: int = 0,
        limit: int = 20,
        fields: list[str] | None = None,
        filter: Filter | None = None,
    ) -> DocumentsInfo:
        """Get a batch documents from the index.

        Args:
            offset: Number of documents to skip. Defaults to 0.
            limit: Maximum number of documents returnedd. Defaults to 20.
            fields: Document attributes to show. If this value is None then all
                attributes are retrieved. Defaults to None.
            filter: Filter value information. Defaults to None. Note: This parameter can only be
                used with Meilisearch >= v1.2.0

        Returns:
            Documents info.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.


        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     documents = await index.get_documents()
        """
        parameters: JsonDict = {
            "offset": offset,
            "limit": limit,
        }

        if not filter:
            if fields:
                parameters["fields"] = ",".join(fields)

            url = _build_encoded_url(self._documents_url, parameters)
            response = await self._http_requests.get(url)

            return DocumentsInfo(**response.json())

        if fields:
            parameters["fields"] = fields

        parameters["filter"] = filter

        response = await self._http_requests.post(f"{self._documents_url}/fetch", body=parameters)

        return DocumentsInfo(**response.json())

    async def add_documents(
        self,
        documents: Sequence[JsonMapping],
        primary_key: str | None = None,
        *,
        compress: bool = False,
    ) -> TaskInfo:
        """Add documents to the index.

        Args:
            documents: List of documents.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> documents = [
            >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
            >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
            >>> ]
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents(documents)
        """
        if primary_key:
            url = _build_encoded_url(self._documents_url, {"primaryKey": primary_key})
        else:
            url = self._documents_url

        if self._pre_add_documents_plugins:
            pre = await AsyncIndex._run_plugins(
                self._pre_add_documents_plugins,
                AsyncEvent.PRE,
                documents=documents,
                primary_key=primary_key,
            )
            if pre.get("document_result"):
                documents = pre["document_result"]

        if self._concurrent_add_documents_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_add_documents_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tasks.append(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )
                    if _plugin_has_method(plugin, "run_document_plugin"):
                        tasks.append(
                            plugin.run_document_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )

                tasks.append(self._http_requests.post(url, documents, compress=compress))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_add_documents_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_add_documents_plugins,
                        AsyncEvent.POST,
                        result=result,
                        documents=documents,
                        primary_key=primary_key,
                    )
                    if isinstance(post["generic_result"], TaskInfo):
                        result = post["generic_result"]
                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_add_documents_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tg.create_task(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )
                    if _plugin_has_method(plugin, "run_document_plugin"):
                        tg.create_task(
                            plugin.run_document_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )

                response_coroutine = tg.create_task(
                    self._http_requests.post(url, documents, compress=compress)
                )

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_add_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_add_documents_plugins,
                    AsyncEvent.POST,
                    result=result,
                    documents=documents,
                    primary_key=primary_key,
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]

            return result

        response = await self._http_requests.post(url, documents, compress=compress)

        result = TaskInfo(**response.json())
        if self._post_add_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_add_documents_plugins,
                AsyncEvent.POST,
                result=result,
                documents=documents,
                primary_key=primary_key,
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    async def add_documents_in_batches(
        self,
        documents: Sequence[JsonMapping],
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Adds documents in batches to reduce RAM usage with indexing.

        Args:
            documents: List of documents.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> >>> documents = [
            >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
            >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
            >>> ]
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_in_batches(documents)
        """
        if concurrency_limit:
            async with asyncio.Semaphore(concurrency_limit):
                if not use_task_groups():
                    batches = [
                        self.add_documents(x, primary_key, compress=compress)
                        for x in _batch(documents, batch_size)
                    ]
                    return await asyncio.gather(*batches)

                async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                    tasks = [
                        tg.create_task(self.add_documents(x, primary_key, compress=compress))
                        for x in _batch(documents, batch_size)
                    ]

                return [x.result() for x in tasks]

        if not use_task_groups():
            batches = [
                self.add_documents(x, primary_key, compress=compress)
                for x in _batch(documents, batch_size)
            ]
            return await asyncio.gather(*batches)

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            tasks = [
                tg.create_task(self.add_documents(x, primary_key, compress=compress))
                for x in _batch(documents, batch_size)
            ]

        return [x.result() for x in tasks]

    async def add_documents_from_directory(
        self,
        directory_path: Path | str,
        *,
        primary_key: str | None = None,
        document_type: str = "json",
        csv_delimiter: str | None = None,
        combine_documents: bool = True,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Load all json files from a directory and add the documents to the index.

        Args:
            directory_path: Path to the directory that contains the json files.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            document_type: The type of document being added. Accepted types are json, csv, and
                ndjson. For csv files the first row of the document should be a header row contining
                the field names, and ever for should have a title.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            combine_documents: If set to True this will combine the documents from all the files
                before indexing them. Defaults to True.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            The details of the task status.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> directory_path = Path("/path/to/directory/containing/files")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_from_directory(directory_path)
        """
        directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

        if combine_documents:
            all_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    all_documents.append(documents)

            _raise_on_no_documents(all_documents, document_type, directory_path)

            loop = asyncio.get_running_loop()
            combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

            response = await self.add_documents(combined, primary_key, compress=compress)

            return [response]

        if concurrency_limit:
            async with asyncio.Semaphore(concurrency_limit):
                if not use_task_groups():
                    add_documents = []
                    for path in directory.iterdir():
                        if path.suffix == f".{document_type}":
                            documents = await _async_load_documents_from_file(
                                path, csv_delimiter, json_handler=self._json_handler
                            )
                            add_documents.append(
                                self.add_documents(documents, primary_key, compress=compress)
                            )

                    _raise_on_no_documents(add_documents, document_type, directory_path)

                    if len(add_documents) > 1:
                        # Send the first document on its own before starting the gather. Otherwise Meilisearch
                        # returns an error because it thinks all entries are trying to create the same index.
                        first_response = [await add_documents.pop()]

                        responses = await asyncio.gather(*add_documents)
                        responses = [*first_response, *responses]
                    else:
                        responses = [await add_documents[0]]

                    return responses

                async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                    tasks = []
                    all_results = []
                    for i, path in enumerate(directory.iterdir()):
                        if path.suffix == f".{document_type}":
                            documents = await _async_load_documents_from_file(
                                path, csv_delimiter, json_handler=self._json_handler
                            )
                            if i == 0:
                                all_results = [
                                    await self.add_documents(documents, compress=compress)
                                ]
                            else:
                                tasks.append(
                                    tg.create_task(
                                        self.add_documents(
                                            documents, primary_key, compress=compress
                                        )
                                    )
                                )

        if not use_task_groups():
            add_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    add_documents.append(
                        self.add_documents(documents, primary_key, compress=compress)
                    )

            _raise_on_no_documents(add_documents, document_type, directory_path)

            if len(add_documents) > 1:
                # Send the first document on its own before starting the gather. Otherwise Meilisearch
                # returns an error because it thinks all entries are trying to create the same index.
                first_response = [await add_documents.pop()]

                responses = await asyncio.gather(*add_documents)
                responses = [*first_response, *responses]
            else:
                responses = [await add_documents[0]]

            return responses

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            tasks = []
            all_results = []
            for i, path in enumerate(directory.iterdir()):
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    if i == 0:
                        all_results = [await self.add_documents(documents, compress=compress)]
                    else:
                        tasks.append(
                            tg.create_task(
                                self.add_documents(documents, primary_key, compress=compress)
                            )
                        )

        results = [x.result() for x in tasks]
        all_results = [*all_results, *results]
        _raise_on_no_documents(all_results, document_type, directory_path)
        return all_results

    async def add_documents_from_directory_in_batches(
        self,
        directory_path: Path | str,
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        document_type: str = "json",
        csv_delimiter: str | None = None,
        combine_documents: bool = True,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Load all json files from a directory and add the documents to the index in batches.

        Args:
            directory_path: Path to the directory that contains the json files.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            document_type: The type of document being added. Accepted types are json, csv, and
                ndjson. For csv files the first row of the document should be a header row contining
                the field names, and ever for should have a title.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            combine_documents: If set to True this will combine the documents from all the files
                before indexing them. Defaults to True.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> directory_path = Path("/path/to/directory/containing/files")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_from_directory_in_batches(directory_path)
        """
        directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

        if combine_documents:
            all_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter=csv_delimiter, json_handler=self._json_handler
                    )
                    all_documents.append(documents)

            _raise_on_no_documents(all_documents, document_type, directory_path)

            loop = asyncio.get_running_loop()
            combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

            return await self.add_documents_in_batches(
                combined,
                batch_size=batch_size,
                primary_key=primary_key,
                compress=compress,
                concurrency_limit=concurrency_limit,
            )

        responses: list[TaskInfo] = []

        add_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                add_documents.append(
                    self.add_documents_in_batches(
                        documents,
                        batch_size=batch_size,
                        primary_key=primary_key,
                        compress=compress,
                        concurrency_limit=concurrency_limit,
                    )
                )

        _raise_on_no_documents(add_documents, document_type, directory_path)

        if len(add_documents) > 1:
            # Send the first document on its own before starting the gather. Otherwise Meilisearch
            # returns an error because it thinks all entries are trying to create the same index.
            first_response = await add_documents.pop()
            responses_gather = await asyncio.gather(*add_documents)
            responses = [*first_response, *[x for y in responses_gather for x in y]]
        else:
            responses = await add_documents[0]

        return responses

    async def add_documents_from_file(
        self,
        file_path: Path | str,
        primary_key: str | None = None,
        *,
        compress: bool = False,
    ) -> TaskInfo:
        """Add documents to the index from a json file.

        Args:
            file_path: Path to the json file.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.json")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_from_file(file_path)
        """
        documents = await _async_load_documents_from_file(
            file_path, json_handler=self._json_handler
        )

        return await self.add_documents(documents, primary_key=primary_key, compress=compress)

    async def add_documents_from_file_in_batches(
        self,
        file_path: Path | str,
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        csv_delimiter: str | None = None,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Adds documents form a json file in batches to reduce RAM usage with indexing.

        Args:
            file_path: Path to the json file.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.json")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_from_file_in_batches(file_path)
        """
        documents = await _async_load_documents_from_file(
            file_path, csv_delimiter, json_handler=self._json_handler
        )

        return await self.add_documents_in_batches(
            documents,
            batch_size=batch_size,
            primary_key=primary_key,
            compress=compress,
            concurrency_limit=concurrency_limit,
        )

    async def add_documents_from_raw_file(
        self,
        file_path: Path | str,
        primary_key: str | None = None,
        *,
        csv_delimiter: str | None = None,
        compress: bool = False,
    ) -> TaskInfo:
        """Directly send csv or ndjson files to Meilisearch without pre-processing.

        The can reduce RAM usage from Meilisearch during indexing, but does not include the option
        for batching.

        Args:
            file_path: The path to the file to send to Meilisearch. Only csv and ndjson files are
                allowed.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task.

        Raises:
            ValueError: If the file is not a csv or ndjson file, or if a csv_delimiter is sent for
                a non-csv file.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.csv")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.add_documents_from_raw_file(file_path)
        """
        upload_path = Path(file_path) if isinstance(file_path, str) else file_path
        if not upload_path.exists():
            raise MeilisearchError("No file found at the specified path")

        if upload_path.suffix not in (".csv", ".ndjson"):
            raise ValueError("Only csv and ndjson files can be sent as binary files")

        if csv_delimiter and upload_path.suffix != ".csv":
            raise ValueError("A csv_delimiter can only be used with csv files")

        if (
            csv_delimiter
            and len(csv_delimiter) != 1
            or csv_delimiter
            and not csv_delimiter.isascii()
        ):
            raise ValueError("csv_delimiter must be a single ascii character")

        content_type = "text/csv" if upload_path.suffix == ".csv" else "application/x-ndjson"
        parameters = {}

        if primary_key:
            parameters["primaryKey"] = primary_key
        if csv_delimiter:
            parameters["csvDelimiter"] = csv_delimiter

        if parameters:
            url = _build_encoded_url(self._documents_url, parameters)
        else:
            url = self._documents_url

        async with aiofiles.open(upload_path) as f:
            data = await f.read()

        response = await self._http_requests.post(
            url, body=data, content_type=content_type, compress=compress
        )

        return TaskInfo(**response.json())

    async def edit_documents(
        self, function: str, *, context: JsonDict | None = None, filter: str | None = None
    ) -> TaskInfo:
        """Edit documents with a function.

        Edit documents is only available in Meilisearch >= v1.10.0, and is experimental in
        Meilisearch v1.10.0. In order to use this feature you first need to enable it by
        sending a PATCH request to /experimental-features with { "editDocumentsByFunction": true }.

        Args:
            function: Rhai function to use to update the documents.
            context: Parameters to use in the function. Defaults to None.
            filter: Filter the documents before applying the function. Defaults to None.

        Returns:
            The details of the task.

        Raises:
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.edit_documents("doc.title = `${doc.title.to_upper()}`")
        """
        url = f"{self._documents_url}/edit"
        payload: JsonDict = {"function": function}

        if context:
            payload["context"] = context

        if filter:
            payload["filter"] = filter

        response = await self._http_requests.post(url, payload)

        return TaskInfo(**response.json())

    async def update_documents(
        self,
        documents: Sequence[JsonMapping],
        primary_key: str | None = None,
        *,
        compress: bool = False,
    ) -> TaskInfo:
        """Update documents in the index.

        Args:
            documents: List of documents.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> documents = [
            >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
            >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
            >>> ]
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents(documents)
        """
        if primary_key:
            url = _build_encoded_url(self._documents_url, {"primaryKey": primary_key})
        else:
            url = self._documents_url

        if self._pre_update_documents_plugins:
            pre = await AsyncIndex._run_plugins(
                self._pre_update_documents_plugins,
                AsyncEvent.PRE,
                documents=documents,
                primary_key=primary_key,
            )
            if pre.get("document_result"):
                documents = pre["document_result"]

        if self._concurrent_update_documents_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_update_documents_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tasks.append(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )
                    if _plugin_has_method(plugin, "run_document_plugin"):
                        tasks.append(
                            plugin.run_document_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )

                tasks.append(self._http_requests.put(url, documents, compress=compress))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_update_documents_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_update_documents_plugins,
                        AsyncEvent.POST,
                        result=result,
                        documents=documents,
                        primary_key=primary_key,
                    )
                    if isinstance(post["generic_result"], TaskInfo):
                        result = post["generic_result"]

                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_update_documents_plugins:
                    if _plugin_has_method(plugin, "run_plugin"):
                        tg.create_task(
                            plugin.run_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )
                    if _plugin_has_method(plugin, "run_document_plugin"):
                        tg.create_task(
                            plugin.run_document_plugin(  # type: ignore[union-attr]
                                event=AsyncEvent.CONCURRENT,
                                documents=documents,
                                primary_key=primary_key,
                            )
                        )

                response_coroutine = tg.create_task(
                    self._http_requests.put(url, documents, compress=compress)
                )

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_update_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_update_documents_plugins,
                    AsyncEvent.POST,
                    result=result,
                    documents=documents,
                    primary_key=primary_key,
                )

                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]

            return result

        response = await self._http_requests.put(url, documents, compress=compress)
        result = TaskInfo(**response.json())
        if self._post_update_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_update_documents_plugins,
                AsyncEvent.POST,
                result=result,
                documents=documents,
                primary_key=primary_key,
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    async def update_documents_in_batches(
        self,
        documents: Sequence[JsonMapping],
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Update documents in batches to reduce RAM usage with indexing.

        Each batch tries to fill the max_payload_size

        Args:
            documents: List of documents.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> documents = [
            >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
            >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
            >>> ]
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_in_batches(documents)
        """
        if concurrency_limit:
            async with asyncio.Semaphore(concurrency_limit):
                if not use_task_groups():
                    batches = [
                        self.update_documents(x, primary_key, compress=compress)
                        for x in _batch(documents, batch_size)
                    ]
                    return await asyncio.gather(*batches)

                async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                    tasks = [
                        tg.create_task(self.update_documents(x, primary_key, compress=compress))
                        for x in _batch(documents, batch_size)
                    ]
                return [x.result() for x in tasks]

        if not use_task_groups():
            batches = [
                self.update_documents(x, primary_key, compress=compress)
                for x in _batch(documents, batch_size)
            ]
            return await asyncio.gather(*batches)

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            tasks = [
                tg.create_task(self.update_documents(x, primary_key, compress=compress))
                for x in _batch(documents, batch_size)
            ]
        return [x.result() for x in tasks]

    async def update_documents_from_directory(
        self,
        directory_path: Path | str,
        *,
        primary_key: str | None = None,
        document_type: str = "json",
        csv_delimiter: str | None = None,
        combine_documents: bool = True,
        compress: bool = False,
    ) -> list[TaskInfo]:
        """Load all json files from a directory and update the documents.

        Args:
            directory_path: Path to the directory that contains the json files.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            document_type: The type of document being added. Accepted types are json, csv, and
                ndjson. For csv files the first row of the document should be a header row contining
                the field names, and ever for should have a title.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            combine_documents: If set to True this will combine the documents from all the files
                before indexing them. Defaults to True.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> directory_path = Path("/path/to/directory/containing/files")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_from_directory(directory_path)
        """
        directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

        if combine_documents:
            all_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    all_documents.append(documents)

            _raise_on_no_documents(all_documents, document_type, directory_path)

            loop = asyncio.get_running_loop()
            combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

            response = await self.update_documents(combined, primary_key, compress=compress)
            return [response]

        if not use_task_groups():
            update_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    update_documents.append(
                        self.update_documents(documents, primary_key, compress=compress)
                    )

            _raise_on_no_documents(update_documents, document_type, directory_path)

            if len(update_documents) > 1:
                # Send the first document on its own before starting the gather. Otherwise Meilisearch
                # returns an error because it thinks all entries are trying to create the same index.
                first_response = [await update_documents.pop()]
                responses = await asyncio.gather(*update_documents)
                responses = [*first_response, *responses]
            else:
                responses = [await update_documents[0]]

            return responses

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            tasks = []
            results = []
            for i, path in enumerate(directory.iterdir()):
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    if i == 0:
                        results = [
                            await self.update_documents(documents, primary_key, compress=compress)
                        ]
                    else:
                        tasks.append(
                            tg.create_task(
                                self.update_documents(documents, primary_key, compress=compress)
                            )
                        )

        results = [*results, *[x.result() for x in tasks]]
        _raise_on_no_documents(results, document_type, directory_path)
        return results

    async def update_documents_from_directory_in_batches(
        self,
        directory_path: Path | str,
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        document_type: str = "json",
        csv_delimiter: str | None = None,
        combine_documents: bool = True,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Load all json files from a directory and update the documents.

        Args:
            directory_path: Path to the directory that contains the json files.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            document_type: The type of document being added. Accepted types are json, csv, and
                ndjson. For csv files the first row of the document should be a header row contining
                the field names, and ever for should have a title.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            combine_documents: If set to True this will combine the documents from all the files
                before indexing them. Defaults to True.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> directory_path = Path("/path/to/directory/containing/files")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_from_directory_in_batches(directory_path)
        """
        directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

        if combine_documents:
            all_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    all_documents.append(documents)

            _raise_on_no_documents(all_documents, document_type, directory_path)

            loop = asyncio.get_running_loop()
            combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

            return await self.update_documents_in_batches(
                combined,
                batch_size=batch_size,
                primary_key=primary_key,
                compress=compress,
                concurrency_limit=concurrency_limit,
            )

        if not use_task_groups():
            responses: list[TaskInfo] = []

            update_documents = []
            for path in directory.iterdir():
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    update_documents.append(
                        self.update_documents_in_batches(
                            documents,
                            batch_size=batch_size,
                            primary_key=primary_key,
                            compress=compress,
                            concurrency_limit=concurrency_limit,
                        )
                    )

            _raise_on_no_documents(update_documents, document_type, directory_path)

            if len(update_documents) > 1:
                # Send the first document on its own before starting the gather. Otherwise Meilisearch
                # returns an error because it thinks all entries are trying to create the same index.
                first_response = await update_documents.pop()
                responses_gather = await asyncio.gather(*update_documents)
                responses = [*first_response, *[x for y in responses_gather for x in y]]
            else:
                responses = await update_documents[0]

            return responses

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            results = []
            tasks = []
            for i, path in enumerate(directory.iterdir()):
                if path.suffix == f".{document_type}":
                    documents = await _async_load_documents_from_file(
                        path, csv_delimiter, json_handler=self._json_handler
                    )
                    if i == 0:
                        results = await self.update_documents_in_batches(
                            documents,
                            batch_size=batch_size,
                            primary_key=primary_key,
                            compress=compress,
                            concurrency_limit=concurrency_limit,
                        )
                    else:
                        tasks.append(
                            tg.create_task(
                                self.update_documents_in_batches(
                                    documents,
                                    batch_size=batch_size,
                                    primary_key=primary_key,
                                    compress=compress,
                                    concurrency_limit=concurrency_limit,
                                )
                            )
                        )

        results = [*results, *[x for y in tasks for x in y.result()]]
        _raise_on_no_documents(results, document_type, directory_path)
        return results

    async def update_documents_from_file(
        self,
        file_path: Path | str,
        primary_key: str | None = None,
        csv_delimiter: str | None = None,
        *,
        compress: bool = False,
    ) -> TaskInfo:
        """Add documents in the index from a json file.

        Args:
            file_path: Path to the json file.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.json")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_from_file(file_path)
        """
        documents = await _async_load_documents_from_file(
            file_path, csv_delimiter, json_handler=self._json_handler
        )

        return await self.update_documents(documents, primary_key=primary_key, compress=compress)

    async def update_documents_from_file_in_batches(
        self,
        file_path: Path | str,
        *,
        batch_size: int = 1000,
        primary_key: str | None = None,
        compress: bool = False,
        concurrency_limit: int | None = None,
    ) -> list[TaskInfo]:
        """Updates documents form a json file in batches to reduce RAM usage with indexing.

        Args:
            file_path: Path to the json file.
            batch_size: The number of documents that should be included in each batch.
                Defaults to 1000.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            compress: If set to True the data will be sent in gzip format. Defaults to False.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            List of update ids to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.json")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_from_file_in_batches(file_path)
        """
        documents = await _async_load_documents_from_file(
            file_path, json_handler=self._json_handler
        )

        return await self.update_documents_in_batches(
            documents,
            batch_size=batch_size,
            primary_key=primary_key,
            compress=compress,
            concurrency_limit=concurrency_limit,
        )

    async def update_documents_from_raw_file(
        self,
        file_path: Path | str,
        primary_key: str | None = None,
        csv_delimiter: str | None = None,
        *,
        compress: bool = False,
    ) -> TaskInfo:
        """Directly send csv or ndjson files to Meilisearch without pre-processing.

        The can reduce RAM usage from Meilisearch during indexing, but does not include the option
        for batching.

        Args:
            file_path: The path to the file to send to Meilisearch. Only csv and ndjson files are
                allowed.
            primary_key: The primary key of the documents. This will be ignored if already set.
                Defaults to None.
            csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
                can only be used if the file is a csv file. Defaults to comma.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            ValueError: If the file is not a csv or ndjson file, or if a csv_delimiter is sent for
                a non-csv file.
            MeilisearchError: If the file path is not valid
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from pathlib import Path
            >>> from meilisearch_python_sdk import AsyncClient
            >>> file_path = Path("/path/to/file.csv")
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_documents_from_raw_file(file_path)
        """
        upload_path = Path(file_path) if isinstance(file_path, str) else file_path
        if not upload_path.exists():
            raise MeilisearchError("No file found at the specified path")

        if upload_path.suffix not in (".csv", ".ndjson"):
            raise ValueError("Only csv and ndjson files can be sent as binary files")

        if csv_delimiter and upload_path.suffix != ".csv":
            raise ValueError("A csv_delimiter can only be used with csv files")

        if (
            csv_delimiter
            and len(csv_delimiter) != 1
            or csv_delimiter
            and not csv_delimiter.isascii()
        ):
            raise ValueError("csv_delimiter must be a single ascii character")

        content_type = "text/csv" if upload_path.suffix == ".csv" else "application/x-ndjson"
        parameters = {}

        if primary_key:
            parameters["primaryKey"] = primary_key
        if csv_delimiter:
            parameters["csvDelimiter"] = csv_delimiter

        if parameters:
            url = _build_encoded_url(self._documents_url, parameters)
        else:
            url = self._documents_url

        async with aiofiles.open(upload_path) as f:
            data = await f.read()

        response = await self._http_requests.put(
            url, body=data, content_type=content_type, compress=compress
        )

        return TaskInfo(**response.json())

    async def delete_document(self, document_id: str) -> TaskInfo:
        """Delete one document from the index.

        Args:
            document_id: Unique identifier of the document.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_document("1234")
        """
        url = f"{self._documents_url}/{document_id}"

        if self._pre_delete_document_plugins:
            await AsyncIndex._run_plugins(
                self._pre_delete_document_plugins, AsyncEvent.PRE, document_id=document_id
            )

        if self._concurrent_delete_document_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_delete_document_plugins:
                    tasks.append(
                        plugin.run_plugin(event=AsyncEvent.CONCURRENT, document_id=document_id)
                    )

                tasks.append(self._http_requests.delete(url))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_delete_document_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_delete_document_plugins, AsyncEvent.POST, result=result
                    )
                    if isinstance(post.get("generic_result"), TaskInfo):
                        result = post["generic_result"]
                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_delete_document_plugins:
                    tg.create_task(
                        plugin.run_plugin(event=AsyncEvent.CONCURRENT, document_id=document_id)
                    )

                response_coroutine = tg.create_task(self._http_requests.delete(url))

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_delete_document_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_document_plugins, event=AsyncEvent.POST, result=result
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]
            return result

        response = await self._http_requests.delete(url)
        result = TaskInfo(**response.json())
        if self._post_delete_document_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_document_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    async def delete_documents(self, ids: list[str]) -> TaskInfo:
        """Delete multiple documents from the index.

        Args:
            ids: List of unique identifiers of documents.

        Returns:
            List of update ids to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_documents(["1234", "5678"])
        """
        url = f"{self._documents_url}/delete-batch"

        if self._pre_delete_documents_plugins:
            await AsyncIndex._run_plugins(
                self._pre_delete_documents_plugins, AsyncEvent.PRE, ids=ids
            )

        if self._concurrent_delete_documents_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_delete_documents_plugins:
                    tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT, ids=ids))

                tasks.append(self._http_requests.post(url, ids))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_delete_documents_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_delete_documents_plugins, AsyncEvent.POST, result=result
                    )
                    if isinstance(post.get("generic_result"), TaskInfo):
                        result = post["generic_result"]
                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_delete_documents_plugins:
                    tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT, ids=ids))

                response_coroutine = tg.create_task(self._http_requests.post(url, ids))

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_delete_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_documents_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]
            return result

        response = await self._http_requests.post(url, ids)
        result = TaskInfo(**response.json())
        if self._post_delete_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_documents_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    async def delete_documents_by_filter(self, filter: Filter) -> TaskInfo:
        """Delete documents from the index by filter.

        Args:
            filter: The filter value information.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_pyrhon_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_documents_by_filter("genre=horor"))
        """
        url = f"{self._documents_url}/delete"

        if self._pre_delete_documents_by_filter_plugins:
            await AsyncIndex._run_plugins(
                self._pre_delete_documents_by_filter_plugins, AsyncEvent.PRE, filter=filter
            )

        if self._concurrent_delete_documents_by_filter_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_delete_documents_by_filter_plugins:
                    tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT, filter=filter))

                tasks.append(self._http_requests.post(url, body={"filter": filter}))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_delete_documents_by_filter_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_delete_documents_by_filter_plugins,
                        AsyncEvent.POST,
                        result=result,
                    )
                    if isinstance(post["generic_result"], TaskInfo):
                        result = post["generic_result"]
                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_delete_documents_by_filter_plugins:
                    tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT, filter=filter))

                response_coroutine = tg.create_task(
                    self._http_requests.post(url, body={"filter": filter})
                )

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_delete_documents_by_filter_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_documents_by_filter_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]

            return result

        response = await self._http_requests.post(url, body={"filter": filter})
        result = TaskInfo(**response.json())
        if self._post_delete_documents_by_filter_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_documents_by_filter_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post.get("generic_result"), TaskInfo):
                result = post["generic_result"]
        return result

    async def delete_documents_in_batches_by_filter(
        self, filters: list[str | list[str | list[str]]], concurrency_limit: int | None = None
    ) -> list[TaskInfo]:
        """Delete batches of documents from the index by filter.

        Args:
            filters: A list of filter value information.
            concurrency_limit: If set this will limit the number of batches that will be sent
                concurrently. This can be helpful if you find you are overloading the Meilisearch
                server with requests. Defaults to None.

        Returns:
            The a list of details of the task statuses.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_documents_in_batches_by_filter(
            >>>         [
            >>>             "genre=horor"),
            >>>             "release_date=1520035200"),
            >>>         ]
            >>>     )
        """
        if concurrency_limit:
            async with asyncio.Semaphore(concurrency_limit):
                if not use_task_groups():
                    tasks = [self.delete_documents_by_filter(filter) for filter in filters]
                    return await asyncio.gather(*tasks)

                async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                    tg_tasks = [
                        tg.create_task(self.delete_documents_by_filter(filter))
                        for filter in filters
                    ]

                return [x.result() for x in tg_tasks]

        if not use_task_groups():
            tasks = [self.delete_documents_by_filter(filter) for filter in filters]
            return await asyncio.gather(*tasks)

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            tg_tasks = [
                tg.create_task(self.delete_documents_by_filter(filter)) for filter in filters
            ]

        return [x.result() for x in tg_tasks]

    async def delete_all_documents(self) -> TaskInfo:
        """Delete all documents from the index.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.delete_all_document()
        """
        if self._pre_delete_all_documents_plugins:
            await AsyncIndex._run_plugins(self._pre_delete_all_documents_plugins, AsyncEvent.PRE)

        if self._concurrent_delete_all_documents_plugins:
            if not use_task_groups():
                tasks: Any = []
                for plugin in self._concurrent_delete_all_documents_plugins:
                    tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT))

                tasks.append(self._http_requests.delete(self._documents_url))

                responses = await asyncio.gather(*tasks)
                result = TaskInfo(**responses[-1].json())
                if self._post_delete_all_documents_plugins:
                    post = await AsyncIndex._run_plugins(
                        self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
                    )
                    if isinstance(post.get("generic_result"), TaskInfo):
                        result = post["generic_result"]
                return result

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                for plugin in self._concurrent_delete_all_documents_plugins:
                    tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT))

                response_coroutine = tg.create_task(self._http_requests.delete(self._documents_url))

            response = await response_coroutine
            result = TaskInfo(**response.json())
            if self._post_delete_all_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post.get("generic_result"), TaskInfo):
                    result = post["generic_result"]
            return result

        response = await self._http_requests.delete(self._documents_url)
        result = TaskInfo(**response.json())
        if self._post_delete_all_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post.get("generic_result"), TaskInfo):
                result = post["generic_result"]
        return result

    async def get_settings(self) -> MeilisearchSettings:
        """Get settings of the index.

        Returns:
            Settings of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     settings = await index.get_settings()
        """
        response = await self._http_requests.get(self._settings_url)
        response_json = response.json()
        settings = MeilisearchSettings(**response_json)

        if response_json.get("embedders"):
            # TODO: Add back after embedder setting issue fixed https://github.com/meilisearch/meilisearch/issues/4585
            settings.embedders = _embedder_json_to_settings_model(  # pragma: no cover
                response_json["embedders"]
            )

        return settings

    async def update_settings(
        self, body: MeilisearchSettings, *, compress: bool = False
    ) -> TaskInfo:
        """Update settings of the index.

        Args:
            body: Settings of the index.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> from meilisearch_python_sdk import MeilisearchSettings
            >>> new_settings = MeilisearchSettings(
            >>>     synonyms={"wolverine": ["xmen", "logan"], "logan": ["wolverine"]},
            >>>     stop_words=["the", "a", "an"],
            >>>     ranking_rules=[
            >>>         "words",
            >>>         "typo",
            >>>         "proximity",
            >>>         "attribute",
            >>>         "sort",
            >>>         "exactness",
            >>>         "release_date:desc",
            >>>         "rank:desc",
            >>>    ],
            >>>    filterable_attributes=["genre", "director"],
            >>>    distinct_attribute="url",
            >>>    searchable_attributes=["title", "description", "genre"],
            >>>    displayed_attributes=["title", "description", "genre", "release_date"],
            >>>    sortable_attributes=["title", "release_date"],
            >>> )
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_settings(new_settings)
        """
        body_dict = {
            k: v
            for k, v in body.model_dump(by_alias=True, exclude_none=True).items()
            if v is not None
        }
        response = await self._http_requests.patch(self._settings_url, body_dict, compress=compress)

        return TaskInfo(**response.json())

    async def reset_settings(self) -> TaskInfo:
        """Reset settings of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_settings()
        """
        response = await self._http_requests.delete(self._settings_url)

        return TaskInfo(**response.json())

    async def get_ranking_rules(self) -> list[str]:
        """Get ranking rules of the index.

        Returns:
            List containing the ranking rules of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     ranking_rules = await index.get_ranking_rules()
        """
        response = await self._http_requests.get(f"{self._settings_url}/ranking-rules")

        return response.json()

    async def update_ranking_rules(
        self, ranking_rules: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update ranking rules of the index.

        Args:
            ranking_rules: List containing the ranking rules.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> ranking_rules=[
            >>>      "words",
            >>>      "typo",
            >>>      "proximity",
            >>>      "attribute",
            >>>      "sort",
            >>>      "exactness",
            >>>      "release_date:desc",
            >>>      "rank:desc",
            >>> ],
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_ranking_rules(ranking_rules)
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/ranking-rules", ranking_rules, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_ranking_rules(self) -> TaskInfo:
        """Reset ranking rules of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_ranking_rules()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/ranking-rules")

        return TaskInfo(**response.json())

    async def get_distinct_attribute(self) -> str | None:
        """Get distinct attribute of the index.

        Returns:
            String containing the distinct attribute of the index. If no distinct attribute
                `None` is returned.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     distinct_attribute = await index.get_distinct_attribute()
        """
        response = await self._http_requests.get(f"{self._settings_url}/distinct-attribute")

        if not response.json():
            return None

        return response.json()

    async def update_distinct_attribute(self, body: str, *, compress: bool = False) -> TaskInfo:
        """Update distinct attribute of the index.

        Args:
            body: Distinct attribute.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_distinct_attribute("url")
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/distinct-attribute", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_distinct_attribute(self) -> TaskInfo:
        """Reset distinct attribute of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_distinct_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/distinct-attribute")

        return TaskInfo(**response.json())

    async def get_searchable_attributes(self) -> list[str]:
        """Get searchable attributes of the index.

        Returns:
            List containing the searchable attributes of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     searchable_attributes = await index.get_searchable_attributes()
        """
        response = await self._http_requests.get(f"{self._settings_url}/searchable-attributes")

        return response.json()

    async def update_searchable_attributes(
        self, body: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update searchable attributes of the index.

        Args:
            body: List containing the searchable attributes.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_searchable_attributes(["title", "description", "genre"])
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/searchable-attributes", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_searchable_attributes(self) -> TaskInfo:
        """Reset searchable attributes of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_searchable_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/searchable-attributes")

        return TaskInfo(**response.json())

    async def get_displayed_attributes(self) -> list[str]:
        """Get displayed attributes of the index.

        Returns:
            List containing the displayed attributes of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     displayed_attributes = await index.get_displayed_attributes()
        """
        response = await self._http_requests.get(f"{self._settings_url}/displayed-attributes")

        return response.json()

    async def update_displayed_attributes(
        self, body: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update displayed attributes of the index.

        Args:
            body: List containing the displayed attributes.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_displayed_attributes(
            >>>         ["title", "description", "genre", "release_date"]
            >>>     )
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/displayed-attributes", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_displayed_attributes(self) -> TaskInfo:
        """Reset displayed attributes of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_displayed_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/displayed-attributes")

        return TaskInfo(**response.json())

    async def get_stop_words(self) -> list[str] | None:
        """Get stop words of the index.

        Returns:
            List containing the stop words of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     stop_words = await index.get_stop_words()
        """
        response = await self._http_requests.get(f"{self._settings_url}/stop-words")

        if not response.json():
            return None

        return response.json()

    async def update_stop_words(self, body: list[str], *, compress: bool = False) -> TaskInfo:
        """Update stop words of the index.

        Args:
            body: List containing the stop words of the index.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_stop_words(["the", "a", "an"])
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/stop-words", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_stop_words(self) -> TaskInfo:
        """Reset stop words of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_stop_words()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/stop-words")

        return TaskInfo(**response.json())

    async def get_synonyms(self) -> dict[str, list[str]] | None:
        """Get synonyms of the index.

        Returns:
            The synonyms of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     synonyms = await index.get_synonyms()
        """
        response = await self._http_requests.get(f"{self._settings_url}/synonyms")

        if not response.json():
            return None

        return response.json()

    async def update_synonyms(
        self, body: dict[str, list[str]], *, compress: bool = False
    ) -> TaskInfo:
        """Update synonyms of the index.

        Args:
            body: The synonyms of the index.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_synonyms(
            >>>         {"wolverine": ["xmen", "logan"], "logan": ["wolverine"]}
            >>>     )
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/synonyms", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_synonyms(self) -> TaskInfo:
        """Reset synonyms of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_synonyms()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/synonyms")

        return TaskInfo(**response.json())

    async def get_filterable_attributes(self) -> list[str] | None:
        """Get filterable attributes of the index.

        Returns:
            List containing the filterable attributes of the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     filterable_attributes = await index.get_filterable_attributes()
        """
        response = await self._http_requests.get(f"{self._settings_url}/filterable-attributes")

        if not response.json():
            return None

        return response.json()

    async def update_filterable_attributes(
        self, body: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update filterable attributes of the index.

        Args:
            body: List containing the filterable attributes of the index.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_filterable_attributes(["genre", "director"])
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/filterable-attributes", body, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_filterable_attributes(self) -> TaskInfo:
        """Reset filterable attributes of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_filterable_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/filterable-attributes")

        return TaskInfo(**response.json())

    async def get_sortable_attributes(self) -> list[str]:
        """Get sortable attributes of the AsyncIndex.

        Returns:
            List containing the sortable attributes of the AsyncIndex.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     sortable_attributes = await index.get_sortable_attributes()
        """
        response = await self._http_requests.get(f"{self._settings_url}/sortable-attributes")

        return response.json()

    async def update_sortable_attributes(
        self, sortable_attributes: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Get sortable attributes of the AsyncIndex.

        Args:
            sortable_attributes: List of attributes for searching.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_sortable_attributes(["title", "release_date"])
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/sortable-attributes", sortable_attributes, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_sortable_attributes(self) -> TaskInfo:
        """Reset sortable attributes of the index to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_sortable_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/sortable-attributes")

        return TaskInfo(**response.json())

    async def get_typo_tolerance(self) -> TypoTolerance:
        """Get typo tolerance for the index.

        Returns:
            TypoTolerance for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     sortable_attributes = await index.get_typo_tolerance()
        """
        response = await self._http_requests.get(f"{self._settings_url}/typo-tolerance")

        return TypoTolerance(**response.json())

    async def update_typo_tolerance(
        self, typo_tolerance: TypoTolerance, *, compress: bool = False
    ) -> TaskInfo:
        """Update typo tolerance.

        Args:
            typo_tolerance: Typo tolerance settings.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     TypoTolerance(enabled=False)
            >>>     await index.update_typo_tolerance()
        """
        response = await self._http_requests.patch(
            f"{self._settings_url}/typo-tolerance",
            typo_tolerance.model_dump(by_alias=True),
            compress=compress,
        )

        return TaskInfo(**response.json())

    async def reset_typo_tolerance(self) -> TaskInfo:
        """Reset typo tolerance to default values.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_typo_tolerance()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/typo-tolerance")

        return TaskInfo(**response.json())

    async def get_faceting(self) -> Faceting:
        """Get faceting for the index.

        Returns:
            Faceting for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     faceting = await index.get_faceting()
        """
        response = await self._http_requests.get(f"{self._settings_url}/faceting")

        return Faceting(**response.json())

    async def update_faceting(self, faceting: Faceting, *, compress: bool = False) -> TaskInfo:
        """Partially update the faceting settings for an index.

        Args:
            faceting: Faceting values.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_faceting(faceting=Faceting(max_values_per_facet=100))
        """
        response = await self._http_requests.patch(
            f"{self._settings_url}/faceting",
            faceting.model_dump(by_alias=True),
            compress=compress,
        )

        return TaskInfo(**response.json())

    async def reset_faceting(self) -> TaskInfo:
        """Reset an index's faceting settings to their default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_faceting()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/faceting")

        return TaskInfo(**response.json())

    async def get_pagination(self) -> Pagination:
        """Get pagination settings for the index.

        Returns:
            Pagination for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     pagination_settings = await index.get_pagination()
        """
        response = await self._http_requests.get(f"{self._settings_url}/pagination")

        return Pagination(**response.json())

    async def update_pagination(self, settings: Pagination, *, compress: bool = False) -> TaskInfo:
        """Partially update the pagination settings for an index.

        Args:
            settings: settings for pagination.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> from meilisearch_python_sdk.models.settings import Pagination
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_pagination(settings=Pagination(max_total_hits=123))
        """
        response = await self._http_requests.patch(
            f"{self._settings_url}/pagination",
            settings.model_dump(by_alias=True),
            compress=compress,
        )

        return TaskInfo(**response.json())

    async def reset_pagination(self) -> TaskInfo:
        """Reset an index's pagination settings to their default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_pagination()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/pagination")

        return TaskInfo(**response.json())

    async def get_separator_tokens(self) -> list[str]:
        """Get separator token settings for the index.

        Returns:
            Separator tokens for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     separator_token_settings = await index.get_separator_tokens()
        """
        response = await self._http_requests.get(f"{self._settings_url}/separator-tokens")

        return response.json()

    async def update_separator_tokens(
        self, separator_tokens: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update the separator tokens settings for an index.

        Args:
            separator_tokens: List of separator tokens.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_separator_tokens(separator_tokenes=["|", "/")
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/separator-tokens", separator_tokens, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_separator_tokens(self) -> TaskInfo:
        """Reset an index's separator tokens settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_separator_tokens()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/separator-tokens")

        return TaskInfo(**response.json())

    async def get_non_separator_tokens(self) -> list[str]:
        """Get non-separator token settings for the index.

        Returns:
            Non-separator tokens for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     non_separator_token_settings = await index.get_non_separator_tokens()
        """
        response = await self._http_requests.get(f"{self._settings_url}/non-separator-tokens")

        return response.json()

    async def update_non_separator_tokens(
        self, non_separator_tokens: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update the non-separator tokens settings for an index.

        Args:
            non_separator_tokens: List of non-separator tokens.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_non_separator_tokens(non_separator_tokens=["@", "#")
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/non-separator-tokens", non_separator_tokens, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_non_separator_tokens(self) -> TaskInfo:
        """Reset an index's non-separator tokens settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_non_separator_tokens()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/non-separator-tokens")

        return TaskInfo(**response.json())

    async def get_search_cutoff_ms(self) -> int | None:
        """Get search cutoff time in ms.

        Returns:
            Integer representing the search cutoff time in ms, or None.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     search_cutoff_ms_settings = await index.get_search_cutoff_ms()
        """
        response = await self._http_requests.get(f"{self._settings_url}/search-cutoff-ms")

        return response.json()

    async def update_search_cutoff_ms(
        self, search_cutoff_ms: int, *, compress: bool = False
    ) -> TaskInfo:
        """Update the search cutoff for an index.

        Args:
            search_cutoff_ms: Integer value of the search cutoff time in ms.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_search_cutoff_ms(100)
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/search-cutoff-ms", search_cutoff_ms, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_search_cutoff_ms(self) -> TaskInfo:
        """Reset the search cutoff time to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_search_cutoff_ms()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/search-cutoff-ms")

        return TaskInfo(**response.json())

    async def get_word_dictionary(self) -> list[str]:
        """Get word dictionary settings for the index.

        Returns:
            Word dictionary for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     word_dictionary = await index.get_word_dictionary()
        """
        response = await self._http_requests.get(f"{self._settings_url}/dictionary")

        return response.json()

    async def update_word_dictionary(
        self, dictionary: list[str], *, compress: bool = False
    ) -> TaskInfo:
        """Update the word dictionary settings for an index.

        Args:
            dictionary: List of dictionary values.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_word_dictionary(dictionary=["S.O.S", "S.O")
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/dictionary", dictionary, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_word_dictionary(self) -> TaskInfo:
        """Reset an index's word dictionary settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_word_dictionary()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/dictionary")

        return TaskInfo(**response.json())

    async def get_proximity_precision(self) -> ProximityPrecision:
        """Get proximity precision settings for the index.

        Returns:
            Proximity precision for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     proximity_precision = await index.get_proximity_precision()
        """
        response = await self._http_requests.get(f"{self._settings_url}/proximity-precision")

        return ProximityPrecision[to_snake(response.json()).upper()]

    async def update_proximity_precision(
        self, proximity_precision: ProximityPrecision, *, compress: bool = False
    ) -> TaskInfo:
        """Update the proximity precision settings for an index.

        Args:
            proximity_precision: The proximity precision value.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> from meilisearch_python_sdk.models.settings import ProximityPrecision
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_proximity_precision(ProximityPrecision.BY_ATTRIBUTE)
        """
        response = await self._http_requests.put(
            f"{self._settings_url}/proximity-precision",
            proximity_precision.value,
            compress=compress,
        )

        return TaskInfo(**response.json())

    async def reset_proximity_precision(self) -> TaskInfo:
        """Reset an index's proximity precision settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_proximity_precision()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/proximity-precision")

        return TaskInfo(**response.json())

    async def get_embedders(self) -> Embedders | None:
        """Get embedder settings for the index.

        Returns:
            Embedders for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     embedders = await index.get_embedders()
        """
        response = await self._http_requests.get(f"{self._settings_url}/embedders")

        return _embedder_json_to_embedders_model(response.json())

    async def update_embedders(self, embedders: Embedders, *, compress: bool = False) -> TaskInfo:
        """Update the embedders settings for an index.

        Args:
            embedders: The embedders value.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> from meilisearch_python_sdk.models.settings import Embedders, UserProvidedEmbedder
            >>>
            >>>
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_embedders(
            >>>         Embedders(embedders={"default": UserProvidedEmbedder(dimensions=512)})
            >>>     )
        """
        payload = {}
        for key, embedder in embedders.embedders.items():
            payload[key] = {
                k: v
                for k, v in embedder.model_dump(by_alias=True, exclude_none=True).items()
                if v is not None
            }

        response = await self._http_requests.patch(
            f"{self._settings_url}/embedders", payload, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_embedders(self) -> TaskInfo:
        """Reset an index's embedders settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_embedders()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/embedders")

        return TaskInfo(**response.json())

    async def get_localized_attributes(self) -> list[LocalizedAttributes] | None:
        """Get localized attributes settings for the index.

        Returns:
            Localized attributes for the index.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     localized_attributes = await index.get_localized_attributes()
        """
        response = await self._http_requests.get(f"{self._settings_url}/localized-attributes")

        if not response.json():
            return None

        return [LocalizedAttributes(**x) for x in response.json()]

    async def update_localized_attributes(
        self, localized_attributes: list[LocalizedAttributes], *, compress: bool = False
    ) -> TaskInfo:
        """Update the localized attributes settings for an index.

        Args:
            localized_attributes: The localized attributes value.
            compress: If set to True the data will be sent in gzip format. Defaults to False.

        Returns:
            Task to track the action.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_python_sdk import AsyncClient
            >>> from meilisearch_python_sdk.models.settings import LocalizedAttributes
            >>>
            >>>
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.update_localized_attributes([
            >>>         LocalizedAttributes(locales=["eng", "spa"], attribute_patterns=["*"]),
            >>>         LocalizedAttributes(locales=["ita"], attribute_patterns=["*_it"]),
            >>>     ])
        """
        payload = [x.model_dump(by_alias=True) for x in localized_attributes]
        response = await self._http_requests.put(
            f"{self._settings_url}/localized-attributes", payload, compress=compress
        )

        return TaskInfo(**response.json())

    async def reset_localized_attributes(self) -> TaskInfo:
        """Reset an index's localized attributes settings to the default value.

        Returns:
            The details of the task status.

        Raises:
            MeilisearchCommunicationError: If there was an error communicating with the server.
            MeilisearchApiError: If the Meilisearch API returned an error.

        Examples
            >>> from meilisearch_async_client import AsyncClient
            >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
            >>>     index = client.index("movies")
            >>>     await index.reset_localized_attributes()
        """
        response = await self._http_requests.delete(f"{self._settings_url}/localized-attributes")

        return TaskInfo(**response.json())

    @staticmethod
    async def _run_plugins(
        plugins: Sequence[AsyncPlugin | AsyncDocumentPlugin | AsyncPostSearchPlugin],
        event: AsyncEvent,
        **kwargs: Any,
    ) -> dict[str, Any]:
        generic_plugins = []
        document_plugins = []
        search_plugins = []
        results: dict[str, Any] = {
            "generic_result": None,
            "document_result": None,
            "search_result": None,
        }
        if not use_task_groups():
            for plugin in plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    generic_plugins.append(plugin.run_plugin(event=event, **kwargs))  # type: ignore[union-attr]
                if _plugin_has_method(plugin, "run_document_plugin"):
                    document_plugins.append(plugin.run_document_plugin(event=event, **kwargs))  # type: ignore[union-attr]
                if _plugin_has_method(plugin, "run_post_search_plugin"):
                    search_plugins.append(plugin.run_post_search_plugin(event=event, **kwargs))  # type: ignore[union-attr]
            if generic_plugins:
                generic_results = await asyncio.gather(*generic_plugins)
                if generic_results:
                    results["generic_result"] = generic_results[-1]

            if document_plugins:
                document_results = await asyncio.gather(*document_plugins)
                if document_results:
                    results["document_result"] = document_results[-1]
            if search_plugins:
                search_results = await asyncio.gather(*search_plugins)
                if search_results:
                    results["search_result"] = search_results[-1]

            return results

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            generic_tasks = []
            document_tasks = []
            search_tasks = []
            for plugin in plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    generic_tasks.append(tg.create_task(plugin.run_plugin(event=event, **kwargs)))  # type: ignore[union-attr]
                if _plugin_has_method(plugin, "run_document_plugin"):
                    document_tasks.append(
                        tg.create_task(plugin.run_document_plugin(event=event, **kwargs))  # type: ignore[union-attr]
                    )
                if _plugin_has_method(plugin, "run_post_search_plugin"):
                    search_tasks.append(
                        tg.create_task(plugin.run_post_search_plugin(event=event, **kwargs))  # type: ignore[union-attr]
                    )

        if generic_tasks:
            for result in reversed(generic_tasks):
                if result:
                    results["generic_result"] = await result
                    break

        if document_tasks:
            results["document_result"] = await document_tasks[-1]

        if search_tasks:
            results["search_result"] = await search_tasks[-1]

        return results

__init__(http_client, uid, primary_key=None, created_at=None, updated_at=None, plugins=None, json_handler=None, *, hits_type=JsonDict)

Class initializer.

Parameters:

Name Type Description Default
http_client AsyncClient

An instance of the AsyncClient. This automatically gets passed by the AsyncClient when creating and AsyncIndex instance.

required
uid str

The index's unique identifier.

required
primary_key str | None

The primary key of the documents. Defaults to None.

None
created_at str | datetime | None

The date and time the index was created. Defaults to None.

None
updated_at str | datetime | None

The date and time the index was last updated. Defaults to None.

None
plugins AsyncIndexPlugins | None

Optional plugins can be provided to extend functionality.

None
json_handler BuiltinHandler | OrjsonHandler | UjsonHandler | None

The module to use for json operations. The options are BuiltinHandler (uses the json module from the standard library), OrjsonHandler (uses orjson), or UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding extra needs to be included. Default: BuiltinHandler.

None
hits_type Any

Allows for a custom type to be passed to use for hits. Defaults to JsonDict

JsonDict
Source code in meilisearch_python_sdk/index.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def __init__(
    self,
    http_client: AsyncClient,
    uid: str,
    primary_key: str | None = None,
    created_at: str | datetime | None = None,
    updated_at: str | datetime | None = None,
    plugins: AsyncIndexPlugins | None = None,
    json_handler: BuiltinHandler | OrjsonHandler | UjsonHandler | None = None,
    *,
    hits_type: Any = JsonDict,
):
    """Class initializer.

    Args:
        http_client: An instance of the AsyncClient. This automatically gets passed by the
            AsyncClient when creating and AsyncIndex instance.
        uid: The index's unique identifier.
        primary_key: The primary key of the documents. Defaults to None.
        created_at: The date and time the index was created. Defaults to None.
        updated_at: The date and time the index was last updated. Defaults to None.
        plugins: Optional plugins can be provided to extend functionality.
        json_handler: The module to use for json operations. The options are BuiltinHandler
            (uses the json module from the standard library), OrjsonHandler (uses orjson), or
            UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding
            extra needs to be included. Default: BuiltinHandler.
        hits_type: Allows for a custom type to be passed to use for hits. Defaults to
            JsonDict
    """
    super().__init__(
        uid=uid,
        primary_key=primary_key,
        created_at=created_at,
        updated_at=updated_at,
        json_handler=json_handler,
        hits_type=hits_type,
    )
    self.http_client = http_client
    self._http_requests = AsyncHttpRequests(http_client, json_handler=self._json_handler)
    self.plugins = plugins

add_documents(documents, primary_key=None, *, compress=False) async

Add documents to the index.

Parameters:

Name Type Description Default
documents Sequence[JsonMapping]

List of documents.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> documents = [ >>> {"id": 1, "title": "Movie 1", "genre": "comedy"}, >>> {"id": 2, "title": "Movie 2", "genre": "drama"}, >>> ] >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents(documents)

Source code in meilisearch_python_sdk/index.py
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
async def add_documents(
    self,
    documents: Sequence[JsonMapping],
    primary_key: str | None = None,
    *,
    compress: bool = False,
) -> TaskInfo:
    """Add documents to the index.

    Args:
        documents: List of documents.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> documents = [
        >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
        >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
        >>> ]
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents(documents)
    """
    if primary_key:
        url = _build_encoded_url(self._documents_url, {"primaryKey": primary_key})
    else:
        url = self._documents_url

    if self._pre_add_documents_plugins:
        pre = await AsyncIndex._run_plugins(
            self._pre_add_documents_plugins,
            AsyncEvent.PRE,
            documents=documents,
            primary_key=primary_key,
        )
        if pre.get("document_result"):
            documents = pre["document_result"]

    if self._concurrent_add_documents_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_add_documents_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tasks.append(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )
                if _plugin_has_method(plugin, "run_document_plugin"):
                    tasks.append(
                        plugin.run_document_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )

            tasks.append(self._http_requests.post(url, documents, compress=compress))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_add_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_add_documents_plugins,
                    AsyncEvent.POST,
                    result=result,
                    documents=documents,
                    primary_key=primary_key,
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]
            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_add_documents_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tg.create_task(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )
                if _plugin_has_method(plugin, "run_document_plugin"):
                    tg.create_task(
                        plugin.run_document_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )

            response_coroutine = tg.create_task(
                self._http_requests.post(url, documents, compress=compress)
            )

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_add_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_add_documents_plugins,
                AsyncEvent.POST,
                result=result,
                documents=documents,
                primary_key=primary_key,
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    response = await self._http_requests.post(url, documents, compress=compress)

    result = TaskInfo(**response.json())
    if self._post_add_documents_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_add_documents_plugins,
            AsyncEvent.POST,
            result=result,
            documents=documents,
            primary_key=primary_key,
        )
        if isinstance(post["generic_result"], TaskInfo):
            result = post["generic_result"]

    return result

add_documents_from_directory(directory_path, *, primary_key=None, document_type='json', csv_delimiter=None, combine_documents=True, compress=False, concurrency_limit=None) async

Load all json files from a directory and add the documents to the index.

Parameters:

Name Type Description Default
directory_path Path | str

Path to the directory that contains the json files.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
document_type str

The type of document being added. Accepted types are json, csv, and ndjson. For csv files the first row of the document should be a header row contining the field names, and ever for should have a title.

'json'
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
combine_documents bool

If set to True this will combine the documents from all the files before indexing them. Defaults to True.

True
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

The details of the task status.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> directory_path = Path("/path/to/directory/containing/files") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_from_directory(directory_path)

Source code in meilisearch_python_sdk/index.py
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
async def add_documents_from_directory(
    self,
    directory_path: Path | str,
    *,
    primary_key: str | None = None,
    document_type: str = "json",
    csv_delimiter: str | None = None,
    combine_documents: bool = True,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Load all json files from a directory and add the documents to the index.

    Args:
        directory_path: Path to the directory that contains the json files.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        document_type: The type of document being added. Accepted types are json, csv, and
            ndjson. For csv files the first row of the document should be a header row contining
            the field names, and ever for should have a title.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        combine_documents: If set to True this will combine the documents from all the files
            before indexing them. Defaults to True.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        The details of the task status.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> directory_path = Path("/path/to/directory/containing/files")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_from_directory(directory_path)
    """
    directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

    if combine_documents:
        all_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                all_documents.append(documents)

        _raise_on_no_documents(all_documents, document_type, directory_path)

        loop = asyncio.get_running_loop()
        combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

        response = await self.add_documents(combined, primary_key, compress=compress)

        return [response]

    if concurrency_limit:
        async with asyncio.Semaphore(concurrency_limit):
            if not use_task_groups():
                add_documents = []
                for path in directory.iterdir():
                    if path.suffix == f".{document_type}":
                        documents = await _async_load_documents_from_file(
                            path, csv_delimiter, json_handler=self._json_handler
                        )
                        add_documents.append(
                            self.add_documents(documents, primary_key, compress=compress)
                        )

                _raise_on_no_documents(add_documents, document_type, directory_path)

                if len(add_documents) > 1:
                    # Send the first document on its own before starting the gather. Otherwise Meilisearch
                    # returns an error because it thinks all entries are trying to create the same index.
                    first_response = [await add_documents.pop()]

                    responses = await asyncio.gather(*add_documents)
                    responses = [*first_response, *responses]
                else:
                    responses = [await add_documents[0]]

                return responses

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                tasks = []
                all_results = []
                for i, path in enumerate(directory.iterdir()):
                    if path.suffix == f".{document_type}":
                        documents = await _async_load_documents_from_file(
                            path, csv_delimiter, json_handler=self._json_handler
                        )
                        if i == 0:
                            all_results = [
                                await self.add_documents(documents, compress=compress)
                            ]
                        else:
                            tasks.append(
                                tg.create_task(
                                    self.add_documents(
                                        documents, primary_key, compress=compress
                                    )
                                )
                            )

    if not use_task_groups():
        add_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                add_documents.append(
                    self.add_documents(documents, primary_key, compress=compress)
                )

        _raise_on_no_documents(add_documents, document_type, directory_path)

        if len(add_documents) > 1:
            # Send the first document on its own before starting the gather. Otherwise Meilisearch
            # returns an error because it thinks all entries are trying to create the same index.
            first_response = [await add_documents.pop()]

            responses = await asyncio.gather(*add_documents)
            responses = [*first_response, *responses]
        else:
            responses = [await add_documents[0]]

        return responses

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        tasks = []
        all_results = []
        for i, path in enumerate(directory.iterdir()):
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                if i == 0:
                    all_results = [await self.add_documents(documents, compress=compress)]
                else:
                    tasks.append(
                        tg.create_task(
                            self.add_documents(documents, primary_key, compress=compress)
                        )
                    )

    results = [x.result() for x in tasks]
    all_results = [*all_results, *results]
    _raise_on_no_documents(all_results, document_type, directory_path)
    return all_results

add_documents_from_directory_in_batches(directory_path, *, batch_size=1000, primary_key=None, document_type='json', csv_delimiter=None, combine_documents=True, compress=False, concurrency_limit=None) async

Load all json files from a directory and add the documents to the index in batches.

Parameters:

Name Type Description Default
directory_path Path | str

Path to the directory that contains the json files.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
document_type str

The type of document being added. Accepted types are json, csv, and ndjson. For csv files the first row of the document should be a header row contining the field names, and ever for should have a title.

'json'
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
combine_documents bool

If set to True this will combine the documents from all the files before indexing them. Defaults to True.

True
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> directory_path = Path("/path/to/directory/containing/files") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_from_directory_in_batches(directory_path)

Source code in meilisearch_python_sdk/index.py
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
async def add_documents_from_directory_in_batches(
    self,
    directory_path: Path | str,
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    document_type: str = "json",
    csv_delimiter: str | None = None,
    combine_documents: bool = True,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Load all json files from a directory and add the documents to the index in batches.

    Args:
        directory_path: Path to the directory that contains the json files.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        document_type: The type of document being added. Accepted types are json, csv, and
            ndjson. For csv files the first row of the document should be a header row contining
            the field names, and ever for should have a title.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        combine_documents: If set to True this will combine the documents from all the files
            before indexing them. Defaults to True.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> directory_path = Path("/path/to/directory/containing/files")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_from_directory_in_batches(directory_path)
    """
    directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

    if combine_documents:
        all_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter=csv_delimiter, json_handler=self._json_handler
                )
                all_documents.append(documents)

        _raise_on_no_documents(all_documents, document_type, directory_path)

        loop = asyncio.get_running_loop()
        combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

        return await self.add_documents_in_batches(
            combined,
            batch_size=batch_size,
            primary_key=primary_key,
            compress=compress,
            concurrency_limit=concurrency_limit,
        )

    responses: list[TaskInfo] = []

    add_documents = []
    for path in directory.iterdir():
        if path.suffix == f".{document_type}":
            documents = await _async_load_documents_from_file(
                path, csv_delimiter, json_handler=self._json_handler
            )
            add_documents.append(
                self.add_documents_in_batches(
                    documents,
                    batch_size=batch_size,
                    primary_key=primary_key,
                    compress=compress,
                    concurrency_limit=concurrency_limit,
                )
            )

    _raise_on_no_documents(add_documents, document_type, directory_path)

    if len(add_documents) > 1:
        # Send the first document on its own before starting the gather. Otherwise Meilisearch
        # returns an error because it thinks all entries are trying to create the same index.
        first_response = await add_documents.pop()
        responses_gather = await asyncio.gather(*add_documents)
        responses = [*first_response, *[x for y in responses_gather for x in y]]
    else:
        responses = await add_documents[0]

    return responses

add_documents_from_file(file_path, primary_key=None, *, compress=False) async

Add documents to the index from a json file.

Parameters:

Name Type Description Default
file_path Path | str

Path to the json file.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.json") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_from_file(file_path)

Source code in meilisearch_python_sdk/index.py
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
async def add_documents_from_file(
    self,
    file_path: Path | str,
    primary_key: str | None = None,
    *,
    compress: bool = False,
) -> TaskInfo:
    """Add documents to the index from a json file.

    Args:
        file_path: Path to the json file.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.json")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_from_file(file_path)
    """
    documents = await _async_load_documents_from_file(
        file_path, json_handler=self._json_handler
    )

    return await self.add_documents(documents, primary_key=primary_key, compress=compress)

add_documents_from_file_in_batches(file_path, *, batch_size=1000, primary_key=None, csv_delimiter=None, compress=False, concurrency_limit=None) async

Adds documents form a json file in batches to reduce RAM usage with indexing.

Parameters:

Name Type Description Default
file_path Path | str

Path to the json file.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.json") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_from_file_in_batches(file_path)

Source code in meilisearch_python_sdk/index.py
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
async def add_documents_from_file_in_batches(
    self,
    file_path: Path | str,
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    csv_delimiter: str | None = None,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Adds documents form a json file in batches to reduce RAM usage with indexing.

    Args:
        file_path: Path to the json file.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.json")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_from_file_in_batches(file_path)
    """
    documents = await _async_load_documents_from_file(
        file_path, csv_delimiter, json_handler=self._json_handler
    )

    return await self.add_documents_in_batches(
        documents,
        batch_size=batch_size,
        primary_key=primary_key,
        compress=compress,
        concurrency_limit=concurrency_limit,
    )

add_documents_from_raw_file(file_path, primary_key=None, *, csv_delimiter=None, compress=False) async

Directly send csv or ndjson files to Meilisearch without pre-processing.

The can reduce RAM usage from Meilisearch during indexing, but does not include the option for batching.

Parameters:

Name Type Description Default
file_path Path | str

The path to the file to send to Meilisearch. Only csv and ndjson files are allowed.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task.

Raises:

Type Description
ValueError

If the file is not a csv or ndjson file, or if a csv_delimiter is sent for a non-csv file.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.csv") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_from_raw_file(file_path)

Source code in meilisearch_python_sdk/index.py
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
async def add_documents_from_raw_file(
    self,
    file_path: Path | str,
    primary_key: str | None = None,
    *,
    csv_delimiter: str | None = None,
    compress: bool = False,
) -> TaskInfo:
    """Directly send csv or ndjson files to Meilisearch without pre-processing.

    The can reduce RAM usage from Meilisearch during indexing, but does not include the option
    for batching.

    Args:
        file_path: The path to the file to send to Meilisearch. Only csv and ndjson files are
            allowed.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task.

    Raises:
        ValueError: If the file is not a csv or ndjson file, or if a csv_delimiter is sent for
            a non-csv file.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.csv")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_from_raw_file(file_path)
    """
    upload_path = Path(file_path) if isinstance(file_path, str) else file_path
    if not upload_path.exists():
        raise MeilisearchError("No file found at the specified path")

    if upload_path.suffix not in (".csv", ".ndjson"):
        raise ValueError("Only csv and ndjson files can be sent as binary files")

    if csv_delimiter and upload_path.suffix != ".csv":
        raise ValueError("A csv_delimiter can only be used with csv files")

    if (
        csv_delimiter
        and len(csv_delimiter) != 1
        or csv_delimiter
        and not csv_delimiter.isascii()
    ):
        raise ValueError("csv_delimiter must be a single ascii character")

    content_type = "text/csv" if upload_path.suffix == ".csv" else "application/x-ndjson"
    parameters = {}

    if primary_key:
        parameters["primaryKey"] = primary_key
    if csv_delimiter:
        parameters["csvDelimiter"] = csv_delimiter

    if parameters:
        url = _build_encoded_url(self._documents_url, parameters)
    else:
        url = self._documents_url

    async with aiofiles.open(upload_path) as f:
        data = await f.read()

    response = await self._http_requests.post(
        url, body=data, content_type=content_type, compress=compress
    )

    return TaskInfo(**response.json())

add_documents_in_batches(documents, *, batch_size=1000, primary_key=None, compress=False, concurrency_limit=None) async

Adds documents in batches to reduce RAM usage with indexing.

Parameters:

Name Type Description Default
documents Sequence[JsonMapping]

List of documents.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> >>> documents = [ >>> {"id": 1, "title": "Movie 1", "genre": "comedy"}, >>> {"id": 2, "title": "Movie 2", "genre": "drama"}, >>> ] >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.add_documents_in_batches(documents)

Source code in meilisearch_python_sdk/index.py
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
async def add_documents_in_batches(
    self,
    documents: Sequence[JsonMapping],
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Adds documents in batches to reduce RAM usage with indexing.

    Args:
        documents: List of documents.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> >>> documents = [
        >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
        >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
        >>> ]
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.add_documents_in_batches(documents)
    """
    if concurrency_limit:
        async with asyncio.Semaphore(concurrency_limit):
            if not use_task_groups():
                batches = [
                    self.add_documents(x, primary_key, compress=compress)
                    for x in _batch(documents, batch_size)
                ]
                return await asyncio.gather(*batches)

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                tasks = [
                    tg.create_task(self.add_documents(x, primary_key, compress=compress))
                    for x in _batch(documents, batch_size)
                ]

            return [x.result() for x in tasks]

    if not use_task_groups():
        batches = [
            self.add_documents(x, primary_key, compress=compress)
            for x in _batch(documents, batch_size)
        ]
        return await asyncio.gather(*batches)

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        tasks = [
            tg.create_task(self.add_documents(x, primary_key, compress=compress))
            for x in _batch(documents, batch_size)
        ]

    return [x.result() for x in tasks]

create(http_client, uid, primary_key=None, *, settings=None, wait=True, timeout_in_ms=None, plugins=None, json_handler=None, hits_type=JsonDict) async classmethod

Creates a new index.

In general this method should not be used directly and instead the index should be created through the Client.

Parameters:

Name Type Description Default
http_client AsyncClient

An instance of the AsyncClient. This automatically gets passed by the Client when creating an AsyncIndex instance.

required
uid str

The index's unique identifier.

required
primary_key str | None

The primary key of the documents. Defaults to None.

None
settings MeilisearchSettings | None

Settings for the index. The settings can also be updated independently of creating the index. The advantage to updating them here is updating the settings after adding documents will cause the documents to be re-indexed. Because of this it will be faster to update them before adding documents. Defaults to None (i.e. default Meilisearch index settings).

None
wait bool

If set to True and settings are being updated, the index will be returned after the settings update has completed. If False it will not wait for settings to complete. Default: True

True
timeout_in_ms int | None

Amount of time in milliseconds to wait before raising a MeilisearchTimeoutError. None can also be passed to wait indefinitely. Be aware that if the None option is used the wait time could be very long. Defaults to None.

None
plugins AsyncIndexPlugins | None

Optional plugins can be provided to extend functionality.

None
json_handler BuiltinHandler | OrjsonHandler | UjsonHandler | None

The module to use for json operations. The options are BuiltinHandler (uses the json module from the standard library), OrjsonHandler (uses orjson), or UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding extra needs to be included. Default: BuiltinHandler.

None
hits_type Any

Allows for a custom type to be passed to use for hits. Defaults to JsonDict

JsonDict

Returns:

Type Description
Self

An instance of AsyncIndex containing the information of the newly created index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = await index.create(client, "movies")

Source code in meilisearch_python_sdk/index.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
@classmethod
async def create(
    cls,
    http_client: AsyncClient,
    uid: str,
    primary_key: str | None = None,
    *,
    settings: MeilisearchSettings | None = None,
    wait: bool = True,
    timeout_in_ms: int | None = None,
    plugins: AsyncIndexPlugins | None = None,
    json_handler: BuiltinHandler | OrjsonHandler | UjsonHandler | None = None,
    hits_type: Any = JsonDict,
) -> Self:
    """Creates a new index.

    In general this method should not be used directly and instead the index should be created
    through the `Client`.

    Args:
        http_client: An instance of the AsyncClient. This automatically gets passed by the
            Client when creating an AsyncIndex instance.
        uid: The index's unique identifier.
        primary_key: The primary key of the documents. Defaults to None.
        settings: Settings for the index. The settings can also be updated independently of
            creating the index. The advantage to updating them here is updating the settings after
            adding documents will cause the documents to be re-indexed. Because of this it will be
            faster to update them before adding documents. Defaults to None (i.e. default
            Meilisearch index settings).
        wait: If set to True and settings are being updated, the index will be returned after
            the settings update has completed. If False it will not wait for settings to complete.
            Default: True
        timeout_in_ms: Amount of time in milliseconds to wait before raising a
            MeilisearchTimeoutError. `None` can also be passed to wait indefinitely. Be aware that
            if the `None` option is used the wait time could be very long. Defaults to None.
        plugins: Optional plugins can be provided to extend functionality.
        json_handler: The module to use for json operations. The options are BuiltinHandler
            (uses the json module from the standard library), OrjsonHandler (uses orjson), or
            UjsonHandler (uses ujson). Note that in order use orjson or ujson the corresponding
            extra needs to be included. Default: BuiltinHandler.
        hits_type: Allows for a custom type to be passed to use for hits. Defaults to
            JsonDict

    Returns:
        An instance of AsyncIndex containing the information of the newly created index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = await index.create(client, "movies")
    """
    if not primary_key:
        payload = {"uid": uid}
    else:
        payload = {"primaryKey": primary_key, "uid": uid}

    url = "indexes"
    handler = json_handler if json_handler else BuiltinHandler()
    http_request = AsyncHttpRequests(http_client, json_handler=handler)
    response = await http_request.post(url, payload)
    await async_wait_for_task(
        http_client,
        response.json()["taskUid"],
        timeout_in_ms=timeout_in_ms,
    )

    index_response = await http_request.get(f"{url}/{uid}")
    index_dict = index_response.json()
    index = cls(
        http_client=http_client,
        uid=index_dict["uid"],
        primary_key=index_dict["primaryKey"],
        created_at=index_dict["createdAt"],
        updated_at=index_dict["updatedAt"],
        plugins=plugins,
        json_handler=json_handler,
        hits_type=hits_type,
    )

    if settings:
        settings_task = await index.update_settings(settings)
        if wait:
            await async_wait_for_task(
                http_client, settings_task.task_uid, timeout_in_ms=timeout_in_ms
            )

    return index

delete() async

Deletes the index.

Returns:

Type Description
TaskInfo

The details of the task.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete()

Source code in meilisearch_python_sdk/index.py
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
async def delete(self) -> TaskInfo:
    """Deletes the index.

    Returns:
        The details of the task.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete()
    """
    response = await self._http_requests.delete(self._base_url_with_uid)
    return TaskInfo(**response.json())

delete_all_documents() async

Delete all documents from the index.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_all_document()

Source code in meilisearch_python_sdk/index.py
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
async def delete_all_documents(self) -> TaskInfo:
    """Delete all documents from the index.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_all_document()
    """
    if self._pre_delete_all_documents_plugins:
        await AsyncIndex._run_plugins(self._pre_delete_all_documents_plugins, AsyncEvent.PRE)

    if self._concurrent_delete_all_documents_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_delete_all_documents_plugins:
                tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT))

            tasks.append(self._http_requests.delete(self._documents_url))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_delete_all_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post.get("generic_result"), TaskInfo):
                    result = post["generic_result"]
            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_delete_all_documents_plugins:
                tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT))

            response_coroutine = tg.create_task(self._http_requests.delete(self._documents_url))

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_delete_all_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post.get("generic_result"), TaskInfo):
                result = post["generic_result"]
        return result

    response = await self._http_requests.delete(self._documents_url)
    result = TaskInfo(**response.json())
    if self._post_delete_all_documents_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_delete_all_documents_plugins, AsyncEvent.POST, result=result
        )
        if isinstance(post.get("generic_result"), TaskInfo):
            result = post["generic_result"]
    return result

delete_document(document_id) async

Delete one document from the index.

Parameters:

Name Type Description Default
document_id str

Unique identifier of the document.

required

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_document("1234")

Source code in meilisearch_python_sdk/index.py
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
async def delete_document(self, document_id: str) -> TaskInfo:
    """Delete one document from the index.

    Args:
        document_id: Unique identifier of the document.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_document("1234")
    """
    url = f"{self._documents_url}/{document_id}"

    if self._pre_delete_document_plugins:
        await AsyncIndex._run_plugins(
            self._pre_delete_document_plugins, AsyncEvent.PRE, document_id=document_id
        )

    if self._concurrent_delete_document_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_delete_document_plugins:
                tasks.append(
                    plugin.run_plugin(event=AsyncEvent.CONCURRENT, document_id=document_id)
                )

            tasks.append(self._http_requests.delete(url))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_delete_document_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_document_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post.get("generic_result"), TaskInfo):
                    result = post["generic_result"]
            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_delete_document_plugins:
                tg.create_task(
                    plugin.run_plugin(event=AsyncEvent.CONCURRENT, document_id=document_id)
                )

            response_coroutine = tg.create_task(self._http_requests.delete(url))

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_delete_document_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_document_plugins, event=AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]
        return result

    response = await self._http_requests.delete(url)
    result = TaskInfo(**response.json())
    if self._post_delete_document_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_delete_document_plugins, AsyncEvent.POST, result=result
        )
        if isinstance(post["generic_result"], TaskInfo):
            result = post["generic_result"]

    return result

delete_documents(ids) async

Delete multiple documents from the index.

Parameters:

Name Type Description Default
ids list[str]

List of unique identifiers of documents.

required

Returns:

Type Description
TaskInfo

List of update ids to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_documents(["1234", "5678"])

Source code in meilisearch_python_sdk/index.py
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
async def delete_documents(self, ids: list[str]) -> TaskInfo:
    """Delete multiple documents from the index.

    Args:
        ids: List of unique identifiers of documents.

    Returns:
        List of update ids to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_documents(["1234", "5678"])
    """
    url = f"{self._documents_url}/delete-batch"

    if self._pre_delete_documents_plugins:
        await AsyncIndex._run_plugins(
            self._pre_delete_documents_plugins, AsyncEvent.PRE, ids=ids
        )

    if self._concurrent_delete_documents_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_delete_documents_plugins:
                tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT, ids=ids))

            tasks.append(self._http_requests.post(url, ids))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_delete_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_documents_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post.get("generic_result"), TaskInfo):
                    result = post["generic_result"]
            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_delete_documents_plugins:
                tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT, ids=ids))

            response_coroutine = tg.create_task(self._http_requests.post(url, ids))

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_delete_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_documents_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]
        return result

    response = await self._http_requests.post(url, ids)
    result = TaskInfo(**response.json())
    if self._post_delete_documents_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_delete_documents_plugins, AsyncEvent.POST, result=result
        )
        if isinstance(post["generic_result"], TaskInfo):
            result = post["generic_result"]

    return result

delete_documents_by_filter(filter) async

Delete documents from the index by filter.

Parameters:

Name Type Description Default
filter Filter

The filter value information.

required

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_pyrhon_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_documents_by_filter("genre=horor"))

Source code in meilisearch_python_sdk/index.py
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
async def delete_documents_by_filter(self, filter: Filter) -> TaskInfo:
    """Delete documents from the index by filter.

    Args:
        filter: The filter value information.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_pyrhon_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_documents_by_filter("genre=horor"))
    """
    url = f"{self._documents_url}/delete"

    if self._pre_delete_documents_by_filter_plugins:
        await AsyncIndex._run_plugins(
            self._pre_delete_documents_by_filter_plugins, AsyncEvent.PRE, filter=filter
        )

    if self._concurrent_delete_documents_by_filter_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_delete_documents_by_filter_plugins:
                tasks.append(plugin.run_plugin(event=AsyncEvent.CONCURRENT, filter=filter))

            tasks.append(self._http_requests.post(url, body={"filter": filter}))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_delete_documents_by_filter_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_delete_documents_by_filter_plugins,
                    AsyncEvent.POST,
                    result=result,
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]
            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_delete_documents_by_filter_plugins:
                tg.create_task(plugin.run_plugin(event=AsyncEvent.CONCURRENT, filter=filter))

            response_coroutine = tg.create_task(
                self._http_requests.post(url, body={"filter": filter})
            )

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_delete_documents_by_filter_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_delete_documents_by_filter_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    response = await self._http_requests.post(url, body={"filter": filter})
    result = TaskInfo(**response.json())
    if self._post_delete_documents_by_filter_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_delete_documents_by_filter_plugins, AsyncEvent.POST, result=result
        )
        if isinstance(post.get("generic_result"), TaskInfo):
            result = post["generic_result"]
    return result

delete_documents_in_batches_by_filter(filters, concurrency_limit=None) async

Delete batches of documents from the index by filter.

Parameters:

Name Type Description Default
filters list[str | list[str | list[str]]]

A list of filter value information.

required
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

The a list of details of the task statuses.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_documents_in_batches_by_filter( >>> [ >>> "genre=horor"), >>> "release_date=1520035200"), >>> ] >>> )

Source code in meilisearch_python_sdk/index.py
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
async def delete_documents_in_batches_by_filter(
    self, filters: list[str | list[str | list[str]]], concurrency_limit: int | None = None
) -> list[TaskInfo]:
    """Delete batches of documents from the index by filter.

    Args:
        filters: A list of filter value information.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        The a list of details of the task statuses.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_documents_in_batches_by_filter(
        >>>         [
        >>>             "genre=horor"),
        >>>             "release_date=1520035200"),
        >>>         ]
        >>>     )
    """
    if concurrency_limit:
        async with asyncio.Semaphore(concurrency_limit):
            if not use_task_groups():
                tasks = [self.delete_documents_by_filter(filter) for filter in filters]
                return await asyncio.gather(*tasks)

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                tg_tasks = [
                    tg.create_task(self.delete_documents_by_filter(filter))
                    for filter in filters
                ]

            return [x.result() for x in tg_tasks]

    if not use_task_groups():
        tasks = [self.delete_documents_by_filter(filter) for filter in filters]
        return await asyncio.gather(*tasks)

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        tg_tasks = [
            tg.create_task(self.delete_documents_by_filter(filter)) for filter in filters
        ]

    return [x.result() for x in tg_tasks]

delete_if_exists() async

Delete the index if it already exists.

Returns:

Type Description
bool

True if the index was deleted or False if not.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.delete_if_exists()

Source code in meilisearch_python_sdk/index.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
async def delete_if_exists(self) -> bool:
    """Delete the index if it already exists.

    Returns:
        True if the index was deleted or False if not.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.delete_if_exists()
    """
    response = await self.delete()
    status = await async_wait_for_task(
        self.http_client, response.task_uid, timeout_in_ms=100000
    )
    if status.status == "succeeded":
        return True

    return False

edit_documents(function, *, context=None, filter=None) async

Edit documents with a function.

Edit documents is only available in Meilisearch >= v1.10.0, and is experimental in Meilisearch v1.10.0. In order to use this feature you first need to enable it by sending a PATCH request to /experimental-features with { "editDocumentsByFunction": true }.

Parameters:

Name Type Description Default
function str

Rhai function to use to update the documents.

required
context JsonDict | None

Parameters to use in the function. Defaults to None.

None
filter str | None

Filter the documents before applying the function. Defaults to None.

None

Returns:

Type Description
TaskInfo

The details of the task.

Raises:

Type Description
MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.edit_documents("doc.title = ${doc.title.to_upper()}")

Source code in meilisearch_python_sdk/index.py
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
async def edit_documents(
    self, function: str, *, context: JsonDict | None = None, filter: str | None = None
) -> TaskInfo:
    """Edit documents with a function.

    Edit documents is only available in Meilisearch >= v1.10.0, and is experimental in
    Meilisearch v1.10.0. In order to use this feature you first need to enable it by
    sending a PATCH request to /experimental-features with { "editDocumentsByFunction": true }.

    Args:
        function: Rhai function to use to update the documents.
        context: Parameters to use in the function. Defaults to None.
        filter: Filter the documents before applying the function. Defaults to None.

    Returns:
        The details of the task.

    Raises:
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.edit_documents("doc.title = `${doc.title.to_upper()}`")
    """
    url = f"{self._documents_url}/edit"
    payload: JsonDict = {"function": function}

    if context:
        payload["context"] = context

    if filter:
        payload["filter"] = filter

    response = await self._http_requests.post(url, payload)

    return TaskInfo(**response.json())

Search the index.

Parameters:

Name Type Description Default
query str | None

String containing the word(s) to search

None
facet_name str

The name of the facet to search

required
facet_query str

The facet search value

required
offset int

Number of documents to skip. Defaults to 0.

0
limit int

Maximum number of documents returned. Defaults to 20.

20
filter Filter | None

Filter queries by an attribute value. Defaults to None.

None
facets list[str] | None

Facets for which to retrieve the matching count. Defaults to None.

None
attributes_to_retrieve list[str] | None

Attributes to display in the returned documents. Defaults to ["*"].

None
attributes_to_crop list[str] | None

Attributes whose values have to be cropped. Defaults to None.

None
crop_length int

The maximun number of words to display. Defaults to 200.

200
attributes_to_highlight list[str] | None

Attributes whose values will contain highlighted matching terms. Defaults to None.

None
sort list[str] | None

Attributes by which to sort the results. Defaults to None.

None
show_matches_position bool

Defines whether an object that contains information about the matches should be returned or not. Defaults to False.

False
highlight_pre_tag str

The opening tag for highlighting text. Defaults to .

'<em>'
highlight_post_tag str

The closing tag for highlighting text. Defaults to

'</em>'
crop_marker str

Marker to display when the number of words excedes the crop_length. Defaults to ...

'...'
matching_strategy Literal['all', 'last', 'frequency']

Specifies the matching strategy Meilisearch should use. Defaults to last.

'last'
hits_per_page int | None

Sets the number of results returned per page.

None
page int | None

Sets the specific results page to fetch.

None
attributes_to_search_on list[str] | None

List of field names. Allow search over a subset of searchable attributes without modifying the index settings. Defaults to None.

None
show_ranking_score bool

If set to True the ranking score will be returned with each document in the search. Defaults to False.

False
show_ranking_score_details bool

If set to True the ranking details will be returned with each document in the search. Defaults to False. Note: This parameter can only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order to use this feature in Meilisearch v1.3.0 you first need to enable the feature by sending a PATCH request to /experimental-features with { "scoreDetails": true }. Because this feature is experimental it may be removed or updated causing breaking changes in this library without a major version bump so use with caution. This feature became stable in Meiliseach v1.7.0.

False
ranking_score_threshold float | None

If set, no document whose _rankingScore is under the rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults to None.

None
vector list[float] | None

List of vectors for vector search. Defaults to None. Note: This parameter can only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order to use this feature in Meilisearch v1.3.0 you first need to enable the feature by sending a PATCH request to /experimental-features with { "vectorStore": true }. Because this feature is experimental it may be removed or updated causing breaking changes in this library without a major version bump so use with caution.

None
locales list[str] | None

Specifies the languages for the search. This parameter can only be used with Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

None

Returns:

Type Description
FacetSearchResults

Results of the search

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> search_results = await index.search( >>> "Tron", >>> facet_name="genre", >>> facet_query="Sci-fi" >>> )

Source code in meilisearch_python_sdk/index.py
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
async def facet_search(
    self,
    query: str | None = None,
    *,
    facet_name: str,
    facet_query: str,
    offset: int = 0,
    limit: int = 20,
    filter: Filter | None = None,
    facets: list[str] | None = None,
    attributes_to_retrieve: list[str] | None = None,
    attributes_to_crop: list[str] | None = None,
    crop_length: int = 200,
    attributes_to_highlight: list[str] | None = None,
    sort: list[str] | None = None,
    show_matches_position: bool = False,
    highlight_pre_tag: str = "<em>",
    highlight_post_tag: str = "</em>",
    crop_marker: str = "...",
    matching_strategy: Literal["all", "last", "frequency"] = "last",
    hits_per_page: int | None = None,
    page: int | None = None,
    attributes_to_search_on: list[str] | None = None,
    show_ranking_score: bool = False,
    show_ranking_score_details: bool = False,
    ranking_score_threshold: float | None = None,
    vector: list[float] | None = None,
    locales: list[str] | None = None,
) -> FacetSearchResults:
    """Search the index.

    Args:
        query: String containing the word(s) to search
        facet_name: The name of the facet to search
        facet_query: The facet search value
        offset: Number of documents to skip. Defaults to 0.
        limit: Maximum number of documents returned. Defaults to 20.
        filter: Filter queries by an attribute value. Defaults to None.
        facets: Facets for which to retrieve the matching count. Defaults to None.
        attributes_to_retrieve: Attributes to display in the returned documents.
            Defaults to ["*"].
        attributes_to_crop: Attributes whose values have to be cropped. Defaults to None.
        crop_length: The maximun number of words to display. Defaults to 200.
        attributes_to_highlight: Attributes whose values will contain highlighted matching terms.
            Defaults to None.
        sort: Attributes by which to sort the results. Defaults to None.
        show_matches_position: Defines whether an object that contains information about the
            matches should be returned or not. Defaults to False.
        highlight_pre_tag: The opening tag for highlighting text. Defaults to <em>.
        highlight_post_tag: The closing tag for highlighting text. Defaults to </em>
        crop_marker: Marker to display when the number of words excedes the `crop_length`.
            Defaults to ...
        matching_strategy: Specifies the matching strategy Meilisearch should use. Defaults to
            `last`.
        hits_per_page: Sets the number of results returned per page.
        page: Sets the specific results page to fetch.
        attributes_to_search_on: List of field names. Allow search over a subset of searchable
            attributes without modifying the index settings. Defaults to None.
        show_ranking_score: If set to True the ranking score will be returned with each document
            in the search. Defaults to False.
        show_ranking_score_details: If set to True the ranking details will be returned with
            each document in the search. Defaults to False. Note: This parameter can only be
            used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order
            to use this feature in Meilisearch v1.3.0 you first need to enable the feature by
            sending a PATCH request to /experimental-features with { "scoreDetails": true }.
            Because this feature is experimental it may be removed or updated causing breaking
            changes in this library without a major version bump so use with caution. This
            feature became stable in Meiliseach v1.7.0.
        ranking_score_threshold: If set, no document whose _rankingScore is under the
            rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
            to None.
        vector: List of vectors for vector search. Defaults to None. Note: This parameter can
            only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0.
            In order to use this feature in Meilisearch v1.3.0 you first need to enable the
            feature by sending a PATCH request to /experimental-features with
            { "vectorStore": true }. Because this feature is experimental it may be removed or
            updated causing breaking changes in this library without a major version bump so use
            with caution.
        locales: Specifies the languages for the search. This parameter can only be used with
            Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

    Returns:
        Results of the search

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     search_results = await index.search(
        >>>         "Tron",
        >>>         facet_name="genre",
        >>>         facet_query="Sci-fi"
        >>>     )
    """
    if ranking_score_threshold:
        _validate_ranking_score_threshold(ranking_score_threshold)

    body = _process_search_parameters(
        q=query,
        facet_name=facet_name,
        facet_query=facet_query,
        offset=offset,
        limit=limit,
        filter=filter,
        facets=facets,
        attributes_to_retrieve=attributes_to_retrieve,
        attributes_to_crop=attributes_to_crop,
        crop_length=crop_length,
        attributes_to_highlight=attributes_to_highlight,
        sort=sort,
        show_matches_position=show_matches_position,
        highlight_pre_tag=highlight_pre_tag,
        highlight_post_tag=highlight_post_tag,
        crop_marker=crop_marker,
        matching_strategy=matching_strategy,
        hits_per_page=hits_per_page,
        page=page,
        attributes_to_search_on=attributes_to_search_on,
        show_ranking_score=show_ranking_score,
        show_ranking_score_details=show_ranking_score_details,
        ranking_score_threshold=ranking_score_threshold,
        vector=vector,
        locales=locales,
    )
    search_url = f"{self._base_url_with_uid}/facet-search"

    if self._pre_facet_search_plugins:
        await AsyncIndex._run_plugins(
            self._pre_facet_search_plugins,
            AsyncEvent.PRE,
            query=query,
            offset=offset,
            limit=limit,
            filter=filter,
            facets=facets,
            attributes_to_retrieve=attributes_to_retrieve,
            attributes_to_crop=attributes_to_crop,
            crop_length=crop_length,
            attributes_to_highlight=attributes_to_highlight,
            sort=sort,
            show_matches_position=show_matches_position,
            highlight_pre_tag=highlight_pre_tag,
            highlight_post_tag=highlight_post_tag,
            crop_marker=crop_marker,
            matching_strategy=matching_strategy,
            hits_per_page=hits_per_page,
            page=page,
            attributes_to_search_on=attributes_to_search_on,
            show_ranking_score=show_ranking_score,
            show_ranking_score_details=show_ranking_score_details,
            ranking_score_threshold=ranking_score_threshold,
            vector=vector,
        )

    if self._concurrent_facet_search_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_facet_search_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tasks.append(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            query=query,
                            offset=offset,
                            limit=limit,
                            filter=filter,
                            facets=facets,
                            attributes_to_retrieve=attributes_to_retrieve,
                            attributes_to_crop=attributes_to_crop,
                            crop_length=crop_length,
                            attributes_to_highlight=attributes_to_highlight,
                            sort=sort,
                            show_matches_position=show_matches_position,
                            highlight_pre_tag=highlight_pre_tag,
                            highlight_post_tag=highlight_post_tag,
                            crop_marker=crop_marker,
                            matching_strategy=matching_strategy,
                            hits_per_page=hits_per_page,
                            page=page,
                            attributes_to_search_on=attributes_to_search_on,
                            show_ranking_score=show_ranking_score,
                            show_ranking_score_details=show_ranking_score_details,
                            ranking_score_threshold=ranking_score_threshold,
                            vector=vector,
                        )
                    )

            tasks.append(self._http_requests.post(search_url, body=body))
            responses = await asyncio.gather(*tasks)
            result = FacetSearchResults(**responses[-1].json())
            if self._post_facet_search_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_facet_search_plugins, AsyncEvent.POST, result=result
                )
                if isinstance(post["generic_result"], FacetSearchResults):
                    result = post["generic_result"]

            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_facet_search_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tg.create_task(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            query=query,
                            offset=offset,
                            limit=limit,
                            filter=filter,
                            facets=facets,
                            attributes_to_retrieve=attributes_to_retrieve,
                            attributes_to_crop=attributes_to_crop,
                            crop_length=crop_length,
                            attributes_to_highlight=attributes_to_highlight,
                            sort=sort,
                            show_matches_position=show_matches_position,
                            highlight_pre_tag=highlight_pre_tag,
                            highlight_post_tag=highlight_post_tag,
                            crop_marker=crop_marker,
                            matching_strategy=matching_strategy,
                            hits_per_page=hits_per_page,
                            page=page,
                            attributes_to_search_on=attributes_to_search_on,
                            show_ranking_score=show_ranking_score,
                            show_ranking_score_details=show_ranking_score_details,
                            ranking_score_threshold=ranking_score_threshold,
                            vector=vector,
                        )
                    )

            response_coroutine = tg.create_task(self._http_requests.post(search_url, body=body))

        response = await response_coroutine
        result = FacetSearchResults(**response.json())
        if self._post_facet_search_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_facet_search_plugins, AsyncEvent.POST, result=result
            )
            if isinstance(post["generic_result"], FacetSearchResults):
                result = post["generic_result"]

        return result

    response = await self._http_requests.post(search_url, body=body)
    result = FacetSearchResults(**response.json())
    if self._post_facet_search_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_facet_search_plugins, AsyncEvent.POST, result=result
        )
        if isinstance(post["generic_result"], FacetSearchResults):
            result = post["generic_result"]

    return result

fetch_info() async

Gets the infromation about the index.

Returns:

Type Description
Self

An instance of the AsyncIndex containing the retrieved information.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> index_info = await index.fetch_info()

Source code in meilisearch_python_sdk/index.py
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
async def fetch_info(self) -> Self:
    """Gets the infromation about the index.

    Returns:
        An instance of the AsyncIndex containing the retrieved information.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     index_info = await index.fetch_info()
    """
    response = await self._http_requests.get(self._base_url_with_uid)
    index_dict = response.json()
    self._set_fetch_info(
        index_dict["primaryKey"], index_dict["createdAt"], index_dict["updatedAt"]
    )
    return self

get_displayed_attributes() async

Get displayed attributes of the index.

Returns:

Type Description
list[str]

List containing the displayed attributes of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> displayed_attributes = await index.get_displayed_attributes()

Source code in meilisearch_python_sdk/index.py
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
async def get_displayed_attributes(self) -> list[str]:
    """Get displayed attributes of the index.

    Returns:
        List containing the displayed attributes of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     displayed_attributes = await index.get_displayed_attributes()
    """
    response = await self._http_requests.get(f"{self._settings_url}/displayed-attributes")

    return response.json()

get_distinct_attribute() async

Get distinct attribute of the index.

Returns:

Type Description
str | None

String containing the distinct attribute of the index. If no distinct attribute None is returned.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> distinct_attribute = await index.get_distinct_attribute()

Source code in meilisearch_python_sdk/index.py
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
async def get_distinct_attribute(self) -> str | None:
    """Get distinct attribute of the index.

    Returns:
        String containing the distinct attribute of the index. If no distinct attribute
            `None` is returned.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     distinct_attribute = await index.get_distinct_attribute()
    """
    response = await self._http_requests.get(f"{self._settings_url}/distinct-attribute")

    if not response.json():
        return None

    return response.json()

get_document(document_id) async

Get one document with given document identifier.

Parameters:

Name Type Description Default
document_id str

Unique identifier of the document.

required

Returns:

Type Description
JsonDict

The document information

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> document = await index.get_document("1234")

Source code in meilisearch_python_sdk/index.py
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
async def get_document(self, document_id: str) -> JsonDict:
    """Get one document with given document identifier.

    Args:
        document_id: Unique identifier of the document.

    Returns:
        The document information

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     document = await index.get_document("1234")
    """
    response = await self._http_requests.get(f"{self._documents_url}/{document_id}")

    return response.json()

get_documents(*, offset=0, limit=20, fields=None, filter=None) async

Get a batch documents from the index.

Parameters:

Name Type Description Default
offset int

Number of documents to skip. Defaults to 0.

0
limit int

Maximum number of documents returnedd. Defaults to 20.

20
fields list[str] | None

Document attributes to show. If this value is None then all attributes are retrieved. Defaults to None.

None
filter Filter | None

Filter value information. Defaults to None. Note: This parameter can only be used with Meilisearch >= v1.2.0

None

Returns:

Type Description
DocumentsInfo

Documents info.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> documents = await index.get_documents()

Source code in meilisearch_python_sdk/index.py
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
async def get_documents(
    self,
    *,
    offset: int = 0,
    limit: int = 20,
    fields: list[str] | None = None,
    filter: Filter | None = None,
) -> DocumentsInfo:
    """Get a batch documents from the index.

    Args:
        offset: Number of documents to skip. Defaults to 0.
        limit: Maximum number of documents returnedd. Defaults to 20.
        fields: Document attributes to show. If this value is None then all
            attributes are retrieved. Defaults to None.
        filter: Filter value information. Defaults to None. Note: This parameter can only be
            used with Meilisearch >= v1.2.0

    Returns:
        Documents info.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.


    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     documents = await index.get_documents()
    """
    parameters: JsonDict = {
        "offset": offset,
        "limit": limit,
    }

    if not filter:
        if fields:
            parameters["fields"] = ",".join(fields)

        url = _build_encoded_url(self._documents_url, parameters)
        response = await self._http_requests.get(url)

        return DocumentsInfo(**response.json())

    if fields:
        parameters["fields"] = fields

    parameters["filter"] = filter

    response = await self._http_requests.post(f"{self._documents_url}/fetch", body=parameters)

    return DocumentsInfo(**response.json())

get_embedders() async

Get embedder settings for the index.

Returns:

Type Description
Embedders | None

Embedders for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> embedders = await index.get_embedders()

Source code in meilisearch_python_sdk/index.py
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
async def get_embedders(self) -> Embedders | None:
    """Get embedder settings for the index.

    Returns:
        Embedders for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     embedders = await index.get_embedders()
    """
    response = await self._http_requests.get(f"{self._settings_url}/embedders")

    return _embedder_json_to_embedders_model(response.json())

get_faceting() async

Get faceting for the index.

Returns:

Type Description
Faceting

Faceting for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> faceting = await index.get_faceting()

Source code in meilisearch_python_sdk/index.py
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
async def get_faceting(self) -> Faceting:
    """Get faceting for the index.

    Returns:
        Faceting for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     faceting = await index.get_faceting()
    """
    response = await self._http_requests.get(f"{self._settings_url}/faceting")

    return Faceting(**response.json())

get_filterable_attributes() async

Get filterable attributes of the index.

Returns:

Type Description
list[str] | None

List containing the filterable attributes of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> filterable_attributes = await index.get_filterable_attributes()

Source code in meilisearch_python_sdk/index.py
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
async def get_filterable_attributes(self) -> list[str] | None:
    """Get filterable attributes of the index.

    Returns:
        List containing the filterable attributes of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     filterable_attributes = await index.get_filterable_attributes()
    """
    response = await self._http_requests.get(f"{self._settings_url}/filterable-attributes")

    if not response.json():
        return None

    return response.json()

get_localized_attributes() async

Get localized attributes settings for the index.

Returns:

Type Description
list[LocalizedAttributes] | None

Localized attributes for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> localized_attributes = await index.get_localized_attributes()

Source code in meilisearch_python_sdk/index.py
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
async def get_localized_attributes(self) -> list[LocalizedAttributes] | None:
    """Get localized attributes settings for the index.

    Returns:
        Localized attributes for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     localized_attributes = await index.get_localized_attributes()
    """
    response = await self._http_requests.get(f"{self._settings_url}/localized-attributes")

    if not response.json():
        return None

    return [LocalizedAttributes(**x) for x in response.json()]

get_non_separator_tokens() async

Get non-separator token settings for the index.

Returns:

Type Description
list[str]

Non-separator tokens for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> non_separator_token_settings = await index.get_non_separator_tokens()

Source code in meilisearch_python_sdk/index.py
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
async def get_non_separator_tokens(self) -> list[str]:
    """Get non-separator token settings for the index.

    Returns:
        Non-separator tokens for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     non_separator_token_settings = await index.get_non_separator_tokens()
    """
    response = await self._http_requests.get(f"{self._settings_url}/non-separator-tokens")

    return response.json()

get_pagination() async

Get pagination settings for the index.

Returns:

Type Description
Pagination

Pagination for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> pagination_settings = await index.get_pagination()

Source code in meilisearch_python_sdk/index.py
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
async def get_pagination(self) -> Pagination:
    """Get pagination settings for the index.

    Returns:
        Pagination for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     pagination_settings = await index.get_pagination()
    """
    response = await self._http_requests.get(f"{self._settings_url}/pagination")

    return Pagination(**response.json())

get_primary_key() async

Get the primary key.

Returns:

Type Description
str | None

The primary key for the documents in the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> primary_key = await index.get_primary_key()

Source code in meilisearch_python_sdk/index.py
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
async def get_primary_key(self) -> str | None:
    """Get the primary key.

    Returns:
        The primary key for the documents in the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     primary_key = await index.get_primary_key()
    """
    info = await self.fetch_info()
    return info.primary_key

get_proximity_precision() async

Get proximity precision settings for the index.

Returns:

Type Description
ProximityPrecision

Proximity precision for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> proximity_precision = await index.get_proximity_precision()

Source code in meilisearch_python_sdk/index.py
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
async def get_proximity_precision(self) -> ProximityPrecision:
    """Get proximity precision settings for the index.

    Returns:
        Proximity precision for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     proximity_precision = await index.get_proximity_precision()
    """
    response = await self._http_requests.get(f"{self._settings_url}/proximity-precision")

    return ProximityPrecision[to_snake(response.json()).upper()]

get_ranking_rules() async

Get ranking rules of the index.

Returns:

Type Description
list[str]

List containing the ranking rules of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> ranking_rules = await index.get_ranking_rules()

Source code in meilisearch_python_sdk/index.py
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
async def get_ranking_rules(self) -> list[str]:
    """Get ranking rules of the index.

    Returns:
        List containing the ranking rules of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     ranking_rules = await index.get_ranking_rules()
    """
    response = await self._http_requests.get(f"{self._settings_url}/ranking-rules")

    return response.json()

get_search_cutoff_ms() async

Get search cutoff time in ms.

Returns:

Type Description
int | None

Integer representing the search cutoff time in ms, or None.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> search_cutoff_ms_settings = await index.get_search_cutoff_ms()

Source code in meilisearch_python_sdk/index.py
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
async def get_search_cutoff_ms(self) -> int | None:
    """Get search cutoff time in ms.

    Returns:
        Integer representing the search cutoff time in ms, or None.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     search_cutoff_ms_settings = await index.get_search_cutoff_ms()
    """
    response = await self._http_requests.get(f"{self._settings_url}/search-cutoff-ms")

    return response.json()

get_searchable_attributes() async

Get searchable attributes of the index.

Returns:

Type Description
list[str]

List containing the searchable attributes of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> searchable_attributes = await index.get_searchable_attributes()

Source code in meilisearch_python_sdk/index.py
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
async def get_searchable_attributes(self) -> list[str]:
    """Get searchable attributes of the index.

    Returns:
        List containing the searchable attributes of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     searchable_attributes = await index.get_searchable_attributes()
    """
    response = await self._http_requests.get(f"{self._settings_url}/searchable-attributes")

    return response.json()

get_separator_tokens() async

Get separator token settings for the index.

Returns:

Type Description
list[str]

Separator tokens for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> separator_token_settings = await index.get_separator_tokens()

Source code in meilisearch_python_sdk/index.py
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
async def get_separator_tokens(self) -> list[str]:
    """Get separator token settings for the index.

    Returns:
        Separator tokens for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     separator_token_settings = await index.get_separator_tokens()
    """
    response = await self._http_requests.get(f"{self._settings_url}/separator-tokens")

    return response.json()

get_settings() async

Get settings of the index.

Returns:

Type Description
MeilisearchSettings

Settings of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> settings = await index.get_settings()

Source code in meilisearch_python_sdk/index.py
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
async def get_settings(self) -> MeilisearchSettings:
    """Get settings of the index.

    Returns:
        Settings of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     settings = await index.get_settings()
    """
    response = await self._http_requests.get(self._settings_url)
    response_json = response.json()
    settings = MeilisearchSettings(**response_json)

    if response_json.get("embedders"):
        # TODO: Add back after embedder setting issue fixed https://github.com/meilisearch/meilisearch/issues/4585
        settings.embedders = _embedder_json_to_settings_model(  # pragma: no cover
            response_json["embedders"]
        )

    return settings

get_sortable_attributes() async

Get sortable attributes of the AsyncIndex.

Returns:

Type Description
list[str]

List containing the sortable attributes of the AsyncIndex.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> sortable_attributes = await index.get_sortable_attributes()

Source code in meilisearch_python_sdk/index.py
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
async def get_sortable_attributes(self) -> list[str]:
    """Get sortable attributes of the AsyncIndex.

    Returns:
        List containing the sortable attributes of the AsyncIndex.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     sortable_attributes = await index.get_sortable_attributes()
    """
    response = await self._http_requests.get(f"{self._settings_url}/sortable-attributes")

    return response.json()

get_stats() async

Get stats of the index.

Returns:

Type Description
IndexStats

Stats of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> stats = await index.get_stats()

Source code in meilisearch_python_sdk/index.py
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
async def get_stats(self) -> IndexStats:
    """Get stats of the index.

    Returns:
        Stats of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     stats = await index.get_stats()
    """
    response = await self._http_requests.get(self._stats_url)

    return IndexStats(**response.json())

get_stop_words() async

Get stop words of the index.

Returns:

Type Description
list[str] | None

List containing the stop words of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> stop_words = await index.get_stop_words()

Source code in meilisearch_python_sdk/index.py
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
async def get_stop_words(self) -> list[str] | None:
    """Get stop words of the index.

    Returns:
        List containing the stop words of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     stop_words = await index.get_stop_words()
    """
    response = await self._http_requests.get(f"{self._settings_url}/stop-words")

    if not response.json():
        return None

    return response.json()

get_synonyms() async

Get synonyms of the index.

Returns:

Type Description
dict[str, list[str]] | None

The synonyms of the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> synonyms = await index.get_synonyms()

Source code in meilisearch_python_sdk/index.py
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
async def get_synonyms(self) -> dict[str, list[str]] | None:
    """Get synonyms of the index.

    Returns:
        The synonyms of the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     synonyms = await index.get_synonyms()
    """
    response = await self._http_requests.get(f"{self._settings_url}/synonyms")

    if not response.json():
        return None

    return response.json()

get_typo_tolerance() async

Get typo tolerance for the index.

Returns:

Type Description
TypoTolerance

TypoTolerance for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> sortable_attributes = await index.get_typo_tolerance()

Source code in meilisearch_python_sdk/index.py
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
async def get_typo_tolerance(self) -> TypoTolerance:
    """Get typo tolerance for the index.

    Returns:
        TypoTolerance for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     sortable_attributes = await index.get_typo_tolerance()
    """
    response = await self._http_requests.get(f"{self._settings_url}/typo-tolerance")

    return TypoTolerance(**response.json())

get_word_dictionary() async

Get word dictionary settings for the index.

Returns:

Type Description
list[str]

Word dictionary for the index.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> word_dictionary = await index.get_word_dictionary()

Source code in meilisearch_python_sdk/index.py
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
async def get_word_dictionary(self) -> list[str]:
    """Get word dictionary settings for the index.

    Returns:
        Word dictionary for the index.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     word_dictionary = await index.get_word_dictionary()
    """
    response = await self._http_requests.get(f"{self._settings_url}/dictionary")

    return response.json()

reset_displayed_attributes() async

Reset displayed attributes of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_displayed_attributes()

Source code in meilisearch_python_sdk/index.py
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
async def reset_displayed_attributes(self) -> TaskInfo:
    """Reset displayed attributes of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_displayed_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/displayed-attributes")

    return TaskInfo(**response.json())

reset_distinct_attribute() async

Reset distinct attribute of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_distinct_attributes()

Source code in meilisearch_python_sdk/index.py
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
async def reset_distinct_attribute(self) -> TaskInfo:
    """Reset distinct attribute of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_distinct_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/distinct-attribute")

    return TaskInfo(**response.json())

reset_embedders() async

Reset an index's embedders settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_embedders()

Source code in meilisearch_python_sdk/index.py
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
async def reset_embedders(self) -> TaskInfo:
    """Reset an index's embedders settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_embedders()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/embedders")

    return TaskInfo(**response.json())

reset_faceting() async

Reset an index's faceting settings to their default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_faceting()

Source code in meilisearch_python_sdk/index.py
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
async def reset_faceting(self) -> TaskInfo:
    """Reset an index's faceting settings to their default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_faceting()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/faceting")

    return TaskInfo(**response.json())

reset_filterable_attributes() async

Reset filterable attributes of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_filterable_attributes()

Source code in meilisearch_python_sdk/index.py
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
async def reset_filterable_attributes(self) -> TaskInfo:
    """Reset filterable attributes of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_filterable_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/filterable-attributes")

    return TaskInfo(**response.json())

reset_localized_attributes() async

Reset an index's localized attributes settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_localized_attributes()

Source code in meilisearch_python_sdk/index.py
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
async def reset_localized_attributes(self) -> TaskInfo:
    """Reset an index's localized attributes settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_localized_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/localized-attributes")

    return TaskInfo(**response.json())

reset_non_separator_tokens() async

Reset an index's non-separator tokens settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_non_separator_tokens()

Source code in meilisearch_python_sdk/index.py
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
async def reset_non_separator_tokens(self) -> TaskInfo:
    """Reset an index's non-separator tokens settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_non_separator_tokens()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/non-separator-tokens")

    return TaskInfo(**response.json())

reset_pagination() async

Reset an index's pagination settings to their default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_pagination()

Source code in meilisearch_python_sdk/index.py
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
async def reset_pagination(self) -> TaskInfo:
    """Reset an index's pagination settings to their default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_pagination()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/pagination")

    return TaskInfo(**response.json())

reset_proximity_precision() async

Reset an index's proximity precision settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_proximity_precision()

Source code in meilisearch_python_sdk/index.py
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
async def reset_proximity_precision(self) -> TaskInfo:
    """Reset an index's proximity precision settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_proximity_precision()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/proximity-precision")

    return TaskInfo(**response.json())

reset_ranking_rules() async

Reset ranking rules of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_ranking_rules()

Source code in meilisearch_python_sdk/index.py
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
async def reset_ranking_rules(self) -> TaskInfo:
    """Reset ranking rules of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_ranking_rules()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/ranking-rules")

    return TaskInfo(**response.json())

reset_search_cutoff_ms() async

Reset the search cutoff time to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_search_cutoff_ms()

Source code in meilisearch_python_sdk/index.py
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
async def reset_search_cutoff_ms(self) -> TaskInfo:
    """Reset the search cutoff time to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_search_cutoff_ms()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/search-cutoff-ms")

    return TaskInfo(**response.json())

reset_searchable_attributes() async

Reset searchable attributes of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_searchable_attributes()

Source code in meilisearch_python_sdk/index.py
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
async def reset_searchable_attributes(self) -> TaskInfo:
    """Reset searchable attributes of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_searchable_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/searchable-attributes")

    return TaskInfo(**response.json())

reset_separator_tokens() async

Reset an index's separator tokens settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_separator_tokens()

Source code in meilisearch_python_sdk/index.py
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
async def reset_separator_tokens(self) -> TaskInfo:
    """Reset an index's separator tokens settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_separator_tokens()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/separator-tokens")

    return TaskInfo(**response.json())

reset_settings() async

Reset settings of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_settings()

Source code in meilisearch_python_sdk/index.py
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
async def reset_settings(self) -> TaskInfo:
    """Reset settings of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_settings()
    """
    response = await self._http_requests.delete(self._settings_url)

    return TaskInfo(**response.json())

reset_sortable_attributes() async

Reset sortable attributes of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_sortable_attributes()

Source code in meilisearch_python_sdk/index.py
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
async def reset_sortable_attributes(self) -> TaskInfo:
    """Reset sortable attributes of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_sortable_attributes()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/sortable-attributes")

    return TaskInfo(**response.json())

reset_stop_words() async

Reset stop words of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_stop_words()

Source code in meilisearch_python_sdk/index.py
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
async def reset_stop_words(self) -> TaskInfo:
    """Reset stop words of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_stop_words()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/stop-words")

    return TaskInfo(**response.json())

reset_synonyms() async

Reset synonyms of the index to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_synonyms()

Source code in meilisearch_python_sdk/index.py
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
async def reset_synonyms(self) -> TaskInfo:
    """Reset synonyms of the index to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_synonyms()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/synonyms")

    return TaskInfo(**response.json())

reset_typo_tolerance() async

Reset typo tolerance to default values.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_typo_tolerance()

Source code in meilisearch_python_sdk/index.py
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
async def reset_typo_tolerance(self) -> TaskInfo:
    """Reset typo tolerance to default values.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_typo_tolerance()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/typo-tolerance")

    return TaskInfo(**response.json())

reset_word_dictionary() async

Reset an index's word dictionary settings to the default value.

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_async_client import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.reset_word_dictionary()

Source code in meilisearch_python_sdk/index.py
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
async def reset_word_dictionary(self) -> TaskInfo:
    """Reset an index's word dictionary settings to the default value.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_async_client import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.reset_word_dictionary()
    """
    response = await self._http_requests.delete(f"{self._settings_url}/dictionary")

    return TaskInfo(**response.json())

search(query=None, *, offset=0, limit=20, filter=None, facets=None, attributes_to_retrieve=None, attributes_to_crop=None, crop_length=200, attributes_to_highlight=None, sort=None, show_matches_position=False, highlight_pre_tag='<em>', highlight_post_tag='</em>', crop_marker='...', matching_strategy='last', hits_per_page=None, page=None, attributes_to_search_on=None, distinct=None, show_ranking_score=False, show_ranking_score_details=False, ranking_score_threshold=None, vector=None, hybrid=None, locales=None) async

Search the index.

Parameters:

Name Type Description Default
query str | None

String containing the word(s) to search

None
offset int

Number of documents to skip. Defaults to 0.

0
limit int

Maximum number of documents returned. Defaults to 20.

20
filter Filter | None

Filter queries by an attribute value. Defaults to None.

None
facets list[str] | None

Facets for which to retrieve the matching count. Defaults to None.

None
attributes_to_retrieve list[str] | None

Attributes to display in the returned documents. Defaults to ["*"].

None
attributes_to_crop list[str] | None

Attributes whose values have to be cropped. Defaults to None.

None
crop_length int

The maximun number of words to display. Defaults to 200.

200
attributes_to_highlight list[str] | None

Attributes whose values will contain highlighted matching terms. Defaults to None.

None
sort list[str] | None

Attributes by which to sort the results. Defaults to None.

None
show_matches_position bool

Defines whether an object that contains information about the matches should be returned or not. Defaults to False.

False
highlight_pre_tag str

The opening tag for highlighting text. Defaults to .

'<em>'
highlight_post_tag str

The closing tag for highlighting text. Defaults to

'</em>'
crop_marker str

Marker to display when the number of words excedes the crop_length. Defaults to ...

'...'
matching_strategy Literal['all', 'last', 'frequency']

Specifies the matching strategy Meilisearch should use. Defaults to last.

'last'
hits_per_page int | None

Sets the number of results returned per page.

None
page int | None

Sets the specific results page to fetch.

None
attributes_to_search_on list[str] | None

List of field names. Allow search over a subset of searchable attributes without modifying the index settings. Defaults to None.

None
distinct str | None

If set the distinct value will return at most one result for the filterable attribute. Note that a filterable attributes must be set for this work. Defaults to None.

None
show_ranking_score bool

If set to True the ranking score will be returned with each document in the search. Defaults to False.

False
show_ranking_score_details bool

If set to True the ranking details will be returned with each document in the search. Defaults to False. Note: This parameter can only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order to use this feature in Meilisearch v1.3.0 you first need to enable the feature by sending a PATCH request to /experimental-features with { "scoreDetails": true }. Because this feature is experimental it may be removed or updated causing breaking changes in this library without a major version bump so use with caution. This feature became stable in Meiliseach v1.7.0.

False
ranking_score_threshold float | None

If set, no document whose _rankingScore is under the rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults to None.

None
vector list[float] | None

List of vectors for vector search. Defaults to None. Note: This parameter can only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order to use this feature in Meilisearch v1.3.0 you first need to enable the feature by sending a PATCH request to /experimental-features with { "vectorStore": true }. Because this feature is experimental it may be removed or updated causing breaking changes in this library without a major version bump so use with caution.

None
hybrid Hybrid | None

Hybrid search information. Defaults to None. Note: This parameter can only be used with Meilisearch >= v1.6.0, and is experimental in Meilisearch v1.6.0. In order to use this feature in Meilisearch v1.6.0 you first need to enable the feature by sending a PATCH request to /experimental-features with { "vectorStore": true }. Because this feature is experimental it may be removed or updated causing breaking changes in this library without a major version bump so use with caution.

None
locales list[str] | None

Specifies the languages for the search. This parameter can only be used with Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

None

Returns:

Type Description
SearchResults

Results of the search

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> search_results = await index.search("Tron")

Source code in meilisearch_python_sdk/index.py
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
async def search(
    self,
    query: str | None = None,
    *,
    offset: int = 0,
    limit: int = 20,
    filter: Filter | None = None,
    facets: list[str] | None = None,
    attributes_to_retrieve: list[str] | None = None,
    attributes_to_crop: list[str] | None = None,
    crop_length: int = 200,
    attributes_to_highlight: list[str] | None = None,
    sort: list[str] | None = None,
    show_matches_position: bool = False,
    highlight_pre_tag: str = "<em>",
    highlight_post_tag: str = "</em>",
    crop_marker: str = "...",
    matching_strategy: Literal["all", "last", "frequency"] = "last",
    hits_per_page: int | None = None,
    page: int | None = None,
    attributes_to_search_on: list[str] | None = None,
    distinct: str | None = None,
    show_ranking_score: bool = False,
    show_ranking_score_details: bool = False,
    ranking_score_threshold: float | None = None,
    vector: list[float] | None = None,
    hybrid: Hybrid | None = None,
    locales: list[str] | None = None,
) -> SearchResults:
    """Search the index.

    Args:
        query: String containing the word(s) to search
        offset: Number of documents to skip. Defaults to 0.
        limit: Maximum number of documents returned. Defaults to 20.
        filter: Filter queries by an attribute value. Defaults to None.
        facets: Facets for which to retrieve the matching count. Defaults to None.
        attributes_to_retrieve: Attributes to display in the returned documents.
            Defaults to ["*"].
        attributes_to_crop: Attributes whose values have to be cropped. Defaults to None.
        crop_length: The maximun number of words to display. Defaults to 200.
        attributes_to_highlight: Attributes whose values will contain highlighted matching terms.
            Defaults to None.
        sort: Attributes by which to sort the results. Defaults to None.
        show_matches_position: Defines whether an object that contains information about the
            matches should be returned or not. Defaults to False.
        highlight_pre_tag: The opening tag for highlighting text. Defaults to <em>.
        highlight_post_tag: The closing tag for highlighting text. Defaults to </em>
        crop_marker: Marker to display when the number of words excedes the `crop_length`.
            Defaults to ...
        matching_strategy: Specifies the matching strategy Meilisearch should use. Defaults to
            `last`.
        hits_per_page: Sets the number of results returned per page.
        page: Sets the specific results page to fetch.
        attributes_to_search_on: List of field names. Allow search over a subset of searchable
            attributes without modifying the index settings. Defaults to None.
        distinct: If set the distinct value will return at most one result for the
            filterable attribute. Note that a filterable attributes must be set for this work.
            Defaults to None.
        show_ranking_score: If set to True the ranking score will be returned with each document
            in the search. Defaults to False.
        show_ranking_score_details: If set to True the ranking details will be returned with
            each document in the search. Defaults to False. Note: This parameter can only be
            used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0. In order
            to use this feature in Meilisearch v1.3.0 you first need to enable the feature by
            sending a PATCH request to /experimental-features with { "scoreDetails": true }.
            Because this feature is experimental it may be removed or updated causing breaking
            changes in this library without a major version bump so use with caution. This
            feature became stable in Meiliseach v1.7.0.
        ranking_score_threshold: If set, no document whose _rankingScore is under the
            rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
            to None.
        vector: List of vectors for vector search. Defaults to None. Note: This parameter can
            only be used with Meilisearch >= v1.3.0, and is experimental in Meilisearch v1.3.0.
            In order to use this feature in Meilisearch v1.3.0 you first need to enable the
            feature by sending a PATCH request to /experimental-features with
            { "vectorStore": true }. Because this feature is experimental it may be removed or
            updated causing breaking changes in this library without a major version bump so use
            with caution.
        hybrid: Hybrid search information. Defaults to None. Note: This parameter can
            only be used with Meilisearch >= v1.6.0, and is experimental in Meilisearch v1.6.0.
            In order to use this feature in Meilisearch v1.6.0 you first need to enable the
            feature by sending a PATCH request to /experimental-features with
            { "vectorStore": true }. Because this feature is experimental it may be removed or
            updated causing breaking changes in this library without a major version bump so use
            with caution.
        locales: Specifies the languages for the search. This parameter can only be used with
            Milisearch >= v1.10.0. Defaults to None letting the Meilisearch pick.

    Returns:
        Results of the search

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     search_results = await index.search("Tron")
    """
    if ranking_score_threshold:
        _validate_ranking_score_threshold(ranking_score_threshold)

    body = _process_search_parameters(
        q=query,
        offset=offset,
        limit=limit,
        filter=filter,
        facets=facets,
        attributes_to_retrieve=attributes_to_retrieve,
        attributes_to_crop=attributes_to_crop,
        crop_length=crop_length,
        attributes_to_highlight=attributes_to_highlight,
        sort=sort,
        show_matches_position=show_matches_position,
        highlight_pre_tag=highlight_pre_tag,
        highlight_post_tag=highlight_post_tag,
        crop_marker=crop_marker,
        matching_strategy=matching_strategy,
        hits_per_page=hits_per_page,
        page=page,
        attributes_to_search_on=attributes_to_search_on,
        distinct=distinct,
        show_ranking_score=show_ranking_score,
        show_ranking_score_details=show_ranking_score_details,
        vector=vector,
        hybrid=hybrid,
        ranking_score_threshold=ranking_score_threshold,
        locales=locales,
    )
    search_url = f"{self._base_url_with_uid}/search"

    if self._pre_search_plugins:
        await AsyncIndex._run_plugins(
            self._pre_search_plugins,
            AsyncEvent.PRE,
            query=query,
            offset=offset,
            limit=limit,
            filter=filter,
            facets=facets,
            attributes_to_retrieve=attributes_to_retrieve,
            attributes_to_crop=attributes_to_crop,
            crop_length=crop_length,
            attributes_to_highlight=attributes_to_highlight,
            sort=sort,
            show_matches_position=show_matches_position,
            highlight_pre_tag=highlight_pre_tag,
            highlight_post_tag=highlight_post_tag,
            crop_marker=crop_marker,
            matching_strategy=matching_strategy,
            hits_per_page=hits_per_page,
            page=page,
            attributes_to_search_on=attributes_to_search_on,
            distinct=distinct,
            show_ranking_score=show_ranking_score,
            show_ranking_score_details=show_ranking_score_details,
            vector=vector,
            hybrid=hybrid,
        )

    if self._concurrent_search_plugins:
        if not use_task_groups():
            concurrent_tasks: Any = []
            for plugin in self._concurrent_search_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    concurrent_tasks.append(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            query=query,
                            offset=offset,
                            limit=limit,
                            filter=filter,
                            facets=facets,
                            attributes_to_retrieve=attributes_to_retrieve,
                            attributes_to_crop=attributes_to_crop,
                            crop_length=crop_length,
                            attributes_to_highlight=attributes_to_highlight,
                            sort=sort,
                            show_matches_position=show_matches_position,
                            highlight_pre_tag=highlight_pre_tag,
                            highlight_post_tag=highlight_post_tag,
                            crop_marker=crop_marker,
                            matching_strategy=matching_strategy,
                            hits_per_page=hits_per_page,
                            page=page,
                            attributes_to_search_on=attributes_to_search_on,
                            distinct=distinct,
                            show_ranking_score=show_ranking_score,
                            show_ranking_score_details=show_ranking_score_details,
                            vector=vector,
                        )
                    )

            concurrent_tasks.append(self._http_requests.post(search_url, body=body))

            responses = await asyncio.gather(*concurrent_tasks)
            result = SearchResults[self.hits_type](**responses[-1].json())  # type: ignore[name-defined]
            if self._post_search_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_search_plugins, AsyncEvent.POST, search_results=result
                )
                if post.get("search_result"):
                    result = post["search_result"]

            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_search_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tg.create_task(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            query=query,
                            offset=offset,
                            limit=limit,
                            filter=filter,
                            facets=facets,
                            attributes_to_retrieve=attributes_to_retrieve,
                            attributes_to_crop=attributes_to_crop,
                            crop_length=crop_length,
                            attributes_to_highlight=attributes_to_highlight,
                            sort=sort,
                            show_matches_position=show_matches_position,
                            highlight_pre_tag=highlight_pre_tag,
                            highlight_post_tag=highlight_post_tag,
                            crop_marker=crop_marker,
                            matching_strategy=matching_strategy,
                            hits_per_page=hits_per_page,
                            page=page,
                            attributes_to_search_on=attributes_to_search_on,
                            distinct=distinct,
                            show_ranking_score=show_ranking_score,
                            show_ranking_score_details=show_ranking_score_details,
                            vector=vector,
                        )
                    )

            response_coroutine = tg.create_task(self._http_requests.post(search_url, body=body))

        response = await response_coroutine
        result = SearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]
        if self._post_search_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_search_plugins, AsyncEvent.POST, search_results=result
            )
            if post.get("search_result"):
                result = post["search_result"]

        return result

    response = await self._http_requests.post(search_url, body=body)
    result = SearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]

    if self._post_search_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_search_plugins, AsyncEvent.POST, search_results=result
        )
        if post.get("search_result"):
            result = post["search_result"]

    return result

search_similar_documents(id, *, offset=None, limit=None, filter=None, embedder='default', attributes_to_retrieve=None, show_ranking_score=False, show_ranking_score_details=False, ranking_score_threshold=None) async

Search the index.

Parameters:

Name Type Description Default
id str

The id for the target document that is being used to find similar documents.

required
offset int | None

Number of documents to skip. Defaults to 0.

None
limit int | None

Maximum number of documents returned. Defaults to 20.

None
filter str | None

Filter queries by an attribute value. Defaults to None.

None
embedder str

The vector DB to use for the search.

'default'
attributes_to_retrieve list[str] | None

Attributes to display in the returned documents. Defaults to ["*"].

None
show_ranking_score bool

If set to True the ranking score will be returned with each document in the search. Defaults to False.

False
show_ranking_score_details bool

If set to True the ranking details will be returned with each document in the search. Defaults to False.

False
ranking_score_threshold float | None

If set, no document whose _rankingScore is under the rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults to None.

None

Returns:

Type Description
SimilarSearchResults

Results of the search

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> search_results = await index.search_similar_documents("123")

Source code in meilisearch_python_sdk/index.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
async def search_similar_documents(
    self,
    id: str,
    *,
    offset: int | None = None,
    limit: int | None = None,
    filter: str | None = None,
    embedder: str = "default",
    attributes_to_retrieve: list[str] | None = None,
    show_ranking_score: bool = False,
    show_ranking_score_details: bool = False,
    ranking_score_threshold: float | None = None,
) -> SimilarSearchResults:
    """Search the index.

    Args:
        id: The id for the target document that is being used to find similar documents.
        offset: Number of documents to skip. Defaults to 0.
        limit: Maximum number of documents returned. Defaults to 20.
        filter: Filter queries by an attribute value. Defaults to None.
        embedder: The vector DB to use for the search.
        attributes_to_retrieve: Attributes to display in the returned documents.
            Defaults to ["*"].
        show_ranking_score: If set to True the ranking score will be returned with each document
            in the search. Defaults to False.
        show_ranking_score_details: If set to True the ranking details will be returned with
            each document in the search. Defaults to False.
        ranking_score_threshold: If set, no document whose _rankingScore is under the
            rankingScoreThreshold is returned. The value must be between 0.0 and 1.0. Defaults
            to None.

    Returns:
        Results of the search

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     search_results = await index.search_similar_documents("123")
    """
    payload = {
        "id": id,
        "filter": filter,
        "embedder": embedder,
        "attributesToRetrieve": attributes_to_retrieve,
        "showRankingScore": show_ranking_score,
        "showRankingScoreDetails": show_ranking_score_details,
        "rankingScoreThreshold": ranking_score_threshold,
    }

    if offset:
        payload["offset"] = offset

    if limit:
        payload["limit"] = limit

    response = await self._http_requests.post(
        f"{self._base_url_with_uid}/similar", body=payload
    )

    return SimilarSearchResults[self.hits_type](**response.json())  # type: ignore[name-defined]

update(primary_key) async

Update the index primary key.

Parameters:

Name Type Description Default
primary_key str

The primary key of the documents.

required

Returns:

Type Description
Self

An instance of the AsyncIndex with the updated information.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> updated_index = await index.update()

Source code in meilisearch_python_sdk/index.py
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
async def update(self, primary_key: str) -> Self:
    """Update the index primary key.

    Args:
        primary_key: The primary key of the documents.

    Returns:
        An instance of the AsyncIndex with the updated information.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     updated_index = await index.update()
    """
    payload = {"primaryKey": primary_key}
    response = await self._http_requests.patch(self._base_url_with_uid, payload)
    await async_wait_for_task(
        self.http_client, response.json()["taskUid"], timeout_in_ms=100000
    )
    index_response = await self._http_requests.get(f"{self._base_url_with_uid}")
    self.primary_key = index_response.json()["primaryKey"]
    return self

update_displayed_attributes(body, *, compress=False) async

Update displayed attributes of the index.

Parameters:

Name Type Description Default
body list[str]

List containing the displayed attributes.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_displayed_attributes( >>> ["title", "description", "genre", "release_date"] >>> )

Source code in meilisearch_python_sdk/index.py
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
async def update_displayed_attributes(
    self, body: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update displayed attributes of the index.

    Args:
        body: List containing the displayed attributes.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_displayed_attributes(
        >>>         ["title", "description", "genre", "release_date"]
        >>>     )
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/displayed-attributes", body, compress=compress
    )

    return TaskInfo(**response.json())

update_distinct_attribute(body, *, compress=False) async

Update distinct attribute of the index.

Parameters:

Name Type Description Default
body str

Distinct attribute.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_distinct_attribute("url")

Source code in meilisearch_python_sdk/index.py
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
async def update_distinct_attribute(self, body: str, *, compress: bool = False) -> TaskInfo:
    """Update distinct attribute of the index.

    Args:
        body: Distinct attribute.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_distinct_attribute("url")
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/distinct-attribute", body, compress=compress
    )

    return TaskInfo(**response.json())

update_documents(documents, primary_key=None, *, compress=False) async

Update documents in the index.

Parameters:

Name Type Description Default
documents Sequence[JsonMapping]

List of documents.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> documents = [ >>> {"id": 1, "title": "Movie 1", "genre": "comedy"}, >>> {"id": 2, "title": "Movie 2", "genre": "drama"}, >>> ] >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents(documents)

Source code in meilisearch_python_sdk/index.py
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
async def update_documents(
    self,
    documents: Sequence[JsonMapping],
    primary_key: str | None = None,
    *,
    compress: bool = False,
) -> TaskInfo:
    """Update documents in the index.

    Args:
        documents: List of documents.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> documents = [
        >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
        >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
        >>> ]
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents(documents)
    """
    if primary_key:
        url = _build_encoded_url(self._documents_url, {"primaryKey": primary_key})
    else:
        url = self._documents_url

    if self._pre_update_documents_plugins:
        pre = await AsyncIndex._run_plugins(
            self._pre_update_documents_plugins,
            AsyncEvent.PRE,
            documents=documents,
            primary_key=primary_key,
        )
        if pre.get("document_result"):
            documents = pre["document_result"]

    if self._concurrent_update_documents_plugins:
        if not use_task_groups():
            tasks: Any = []
            for plugin in self._concurrent_update_documents_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tasks.append(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )
                if _plugin_has_method(plugin, "run_document_plugin"):
                    tasks.append(
                        plugin.run_document_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )

            tasks.append(self._http_requests.put(url, documents, compress=compress))

            responses = await asyncio.gather(*tasks)
            result = TaskInfo(**responses[-1].json())
            if self._post_update_documents_plugins:
                post = await AsyncIndex._run_plugins(
                    self._post_update_documents_plugins,
                    AsyncEvent.POST,
                    result=result,
                    documents=documents,
                    primary_key=primary_key,
                )
                if isinstance(post["generic_result"], TaskInfo):
                    result = post["generic_result"]

            return result

        async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
            for plugin in self._concurrent_update_documents_plugins:
                if _plugin_has_method(plugin, "run_plugin"):
                    tg.create_task(
                        plugin.run_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )
                if _plugin_has_method(plugin, "run_document_plugin"):
                    tg.create_task(
                        plugin.run_document_plugin(  # type: ignore[union-attr]
                            event=AsyncEvent.CONCURRENT,
                            documents=documents,
                            primary_key=primary_key,
                        )
                    )

            response_coroutine = tg.create_task(
                self._http_requests.put(url, documents, compress=compress)
            )

        response = await response_coroutine
        result = TaskInfo(**response.json())
        if self._post_update_documents_plugins:
            post = await AsyncIndex._run_plugins(
                self._post_update_documents_plugins,
                AsyncEvent.POST,
                result=result,
                documents=documents,
                primary_key=primary_key,
            )

            if isinstance(post["generic_result"], TaskInfo):
                result = post["generic_result"]

        return result

    response = await self._http_requests.put(url, documents, compress=compress)
    result = TaskInfo(**response.json())
    if self._post_update_documents_plugins:
        post = await AsyncIndex._run_plugins(
            self._post_update_documents_plugins,
            AsyncEvent.POST,
            result=result,
            documents=documents,
            primary_key=primary_key,
        )
        if isinstance(post["generic_result"], TaskInfo):
            result = post["generic_result"]

    return result

update_documents_from_directory(directory_path, *, primary_key=None, document_type='json', csv_delimiter=None, combine_documents=True, compress=False) async

Load all json files from a directory and update the documents.

Parameters:

Name Type Description Default
directory_path Path | str

Path to the directory that contains the json files.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
document_type str

The type of document being added. Accepted types are json, csv, and ndjson. For csv files the first row of the document should be a header row contining the field names, and ever for should have a title.

'json'
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
combine_documents bool

If set to True this will combine the documents from all the files before indexing them. Defaults to True.

True
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
list[TaskInfo]

The details of the task status.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> directory_path = Path("/path/to/directory/containing/files") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_from_directory(directory_path)

Source code in meilisearch_python_sdk/index.py
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
async def update_documents_from_directory(
    self,
    directory_path: Path | str,
    *,
    primary_key: str | None = None,
    document_type: str = "json",
    csv_delimiter: str | None = None,
    combine_documents: bool = True,
    compress: bool = False,
) -> list[TaskInfo]:
    """Load all json files from a directory and update the documents.

    Args:
        directory_path: Path to the directory that contains the json files.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        document_type: The type of document being added. Accepted types are json, csv, and
            ndjson. For csv files the first row of the document should be a header row contining
            the field names, and ever for should have a title.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        combine_documents: If set to True this will combine the documents from all the files
            before indexing them. Defaults to True.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> directory_path = Path("/path/to/directory/containing/files")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_from_directory(directory_path)
    """
    directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

    if combine_documents:
        all_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                all_documents.append(documents)

        _raise_on_no_documents(all_documents, document_type, directory_path)

        loop = asyncio.get_running_loop()
        combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

        response = await self.update_documents(combined, primary_key, compress=compress)
        return [response]

    if not use_task_groups():
        update_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                update_documents.append(
                    self.update_documents(documents, primary_key, compress=compress)
                )

        _raise_on_no_documents(update_documents, document_type, directory_path)

        if len(update_documents) > 1:
            # Send the first document on its own before starting the gather. Otherwise Meilisearch
            # returns an error because it thinks all entries are trying to create the same index.
            first_response = [await update_documents.pop()]
            responses = await asyncio.gather(*update_documents)
            responses = [*first_response, *responses]
        else:
            responses = [await update_documents[0]]

        return responses

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        tasks = []
        results = []
        for i, path in enumerate(directory.iterdir()):
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                if i == 0:
                    results = [
                        await self.update_documents(documents, primary_key, compress=compress)
                    ]
                else:
                    tasks.append(
                        tg.create_task(
                            self.update_documents(documents, primary_key, compress=compress)
                        )
                    )

    results = [*results, *[x.result() for x in tasks]]
    _raise_on_no_documents(results, document_type, directory_path)
    return results

update_documents_from_directory_in_batches(directory_path, *, batch_size=1000, primary_key=None, document_type='json', csv_delimiter=None, combine_documents=True, compress=False, concurrency_limit=None) async

Load all json files from a directory and update the documents.

Parameters:

Name Type Description Default
directory_path Path | str

Path to the directory that contains the json files.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
document_type str

The type of document being added. Accepted types are json, csv, and ndjson. For csv files the first row of the document should be a header row contining the field names, and ever for should have a title.

'json'
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
combine_documents bool

If set to True this will combine the documents from all the files before indexing them. Defaults to True.

True
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
InvalidDocumentError

If the docucment is not a valid format for Meilisearch.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> directory_path = Path("/path/to/directory/containing/files") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_from_directory_in_batches(directory_path)

Source code in meilisearch_python_sdk/index.py
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
async def update_documents_from_directory_in_batches(
    self,
    directory_path: Path | str,
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    document_type: str = "json",
    csv_delimiter: str | None = None,
    combine_documents: bool = True,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Load all json files from a directory and update the documents.

    Args:
        directory_path: Path to the directory that contains the json files.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        document_type: The type of document being added. Accepted types are json, csv, and
            ndjson. For csv files the first row of the document should be a header row contining
            the field names, and ever for should have a title.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        combine_documents: If set to True this will combine the documents from all the files
            before indexing them. Defaults to True.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        InvalidDocumentError: If the docucment is not a valid format for Meilisearch.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> directory_path = Path("/path/to/directory/containing/files")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_from_directory_in_batches(directory_path)
    """
    directory = Path(directory_path) if isinstance(directory_path, str) else directory_path

    if combine_documents:
        all_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                all_documents.append(documents)

        _raise_on_no_documents(all_documents, document_type, directory_path)

        loop = asyncio.get_running_loop()
        combined = await loop.run_in_executor(None, partial(_combine_documents, all_documents))

        return await self.update_documents_in_batches(
            combined,
            batch_size=batch_size,
            primary_key=primary_key,
            compress=compress,
            concurrency_limit=concurrency_limit,
        )

    if not use_task_groups():
        responses: list[TaskInfo] = []

        update_documents = []
        for path in directory.iterdir():
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                update_documents.append(
                    self.update_documents_in_batches(
                        documents,
                        batch_size=batch_size,
                        primary_key=primary_key,
                        compress=compress,
                        concurrency_limit=concurrency_limit,
                    )
                )

        _raise_on_no_documents(update_documents, document_type, directory_path)

        if len(update_documents) > 1:
            # Send the first document on its own before starting the gather. Otherwise Meilisearch
            # returns an error because it thinks all entries are trying to create the same index.
            first_response = await update_documents.pop()
            responses_gather = await asyncio.gather(*update_documents)
            responses = [*first_response, *[x for y in responses_gather for x in y]]
        else:
            responses = await update_documents[0]

        return responses

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        results = []
        tasks = []
        for i, path in enumerate(directory.iterdir()):
            if path.suffix == f".{document_type}":
                documents = await _async_load_documents_from_file(
                    path, csv_delimiter, json_handler=self._json_handler
                )
                if i == 0:
                    results = await self.update_documents_in_batches(
                        documents,
                        batch_size=batch_size,
                        primary_key=primary_key,
                        compress=compress,
                        concurrency_limit=concurrency_limit,
                    )
                else:
                    tasks.append(
                        tg.create_task(
                            self.update_documents_in_batches(
                                documents,
                                batch_size=batch_size,
                                primary_key=primary_key,
                                compress=compress,
                                concurrency_limit=concurrency_limit,
                            )
                        )
                    )

    results = [*results, *[x for y in tasks for x in y.result()]]
    _raise_on_no_documents(results, document_type, directory_path)
    return results

update_documents_from_file(file_path, primary_key=None, csv_delimiter=None, *, compress=False) async

Add documents in the index from a json file.

Parameters:

Name Type Description Default
file_path Path | str

Path to the json file.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.json") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_from_file(file_path)

Source code in meilisearch_python_sdk/index.py
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
async def update_documents_from_file(
    self,
    file_path: Path | str,
    primary_key: str | None = None,
    csv_delimiter: str | None = None,
    *,
    compress: bool = False,
) -> TaskInfo:
    """Add documents in the index from a json file.

    Args:
        file_path: Path to the json file.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.json")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_from_file(file_path)
    """
    documents = await _async_load_documents_from_file(
        file_path, csv_delimiter, json_handler=self._json_handler
    )

    return await self.update_documents(documents, primary_key=primary_key, compress=compress)

update_documents_from_file_in_batches(file_path, *, batch_size=1000, primary_key=None, compress=False, concurrency_limit=None) async

Updates documents form a json file in batches to reduce RAM usage with indexing.

Parameters:

Name Type Description Default
file_path Path | str

Path to the json file.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.json") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_from_file_in_batches(file_path)

Source code in meilisearch_python_sdk/index.py
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
async def update_documents_from_file_in_batches(
    self,
    file_path: Path | str,
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Updates documents form a json file in batches to reduce RAM usage with indexing.

    Args:
        file_path: Path to the json file.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.json")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_from_file_in_batches(file_path)
    """
    documents = await _async_load_documents_from_file(
        file_path, json_handler=self._json_handler
    )

    return await self.update_documents_in_batches(
        documents,
        batch_size=batch_size,
        primary_key=primary_key,
        compress=compress,
        concurrency_limit=concurrency_limit,
    )

update_documents_from_raw_file(file_path, primary_key=None, csv_delimiter=None, *, compress=False) async

Directly send csv or ndjson files to Meilisearch without pre-processing.

The can reduce RAM usage from Meilisearch during indexing, but does not include the option for batching.

Parameters:

Name Type Description Default
file_path Path | str

The path to the file to send to Meilisearch. Only csv and ndjson files are allowed.

required
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
csv_delimiter str | None

A single ASCII character to specify the delimiter for csv files. This can only be used if the file is a csv file. Defaults to comma.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
ValueError

If the file is not a csv or ndjson file, or if a csv_delimiter is sent for a non-csv file.

MeilisearchError

If the file path is not valid

MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from pathlib import Path >>> from meilisearch_python_sdk import AsyncClient >>> file_path = Path("/path/to/file.csv") >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_from_raw_file(file_path)

Source code in meilisearch_python_sdk/index.py
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
async def update_documents_from_raw_file(
    self,
    file_path: Path | str,
    primary_key: str | None = None,
    csv_delimiter: str | None = None,
    *,
    compress: bool = False,
) -> TaskInfo:
    """Directly send csv or ndjson files to Meilisearch without pre-processing.

    The can reduce RAM usage from Meilisearch during indexing, but does not include the option
    for batching.

    Args:
        file_path: The path to the file to send to Meilisearch. Only csv and ndjson files are
            allowed.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        csv_delimiter: A single ASCII character to specify the delimiter for csv files. This
            can only be used if the file is a csv file. Defaults to comma.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        ValueError: If the file is not a csv or ndjson file, or if a csv_delimiter is sent for
            a non-csv file.
        MeilisearchError: If the file path is not valid
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from pathlib import Path
        >>> from meilisearch_python_sdk import AsyncClient
        >>> file_path = Path("/path/to/file.csv")
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_from_raw_file(file_path)
    """
    upload_path = Path(file_path) if isinstance(file_path, str) else file_path
    if not upload_path.exists():
        raise MeilisearchError("No file found at the specified path")

    if upload_path.suffix not in (".csv", ".ndjson"):
        raise ValueError("Only csv and ndjson files can be sent as binary files")

    if csv_delimiter and upload_path.suffix != ".csv":
        raise ValueError("A csv_delimiter can only be used with csv files")

    if (
        csv_delimiter
        and len(csv_delimiter) != 1
        or csv_delimiter
        and not csv_delimiter.isascii()
    ):
        raise ValueError("csv_delimiter must be a single ascii character")

    content_type = "text/csv" if upload_path.suffix == ".csv" else "application/x-ndjson"
    parameters = {}

    if primary_key:
        parameters["primaryKey"] = primary_key
    if csv_delimiter:
        parameters["csvDelimiter"] = csv_delimiter

    if parameters:
        url = _build_encoded_url(self._documents_url, parameters)
    else:
        url = self._documents_url

    async with aiofiles.open(upload_path) as f:
        data = await f.read()

    response = await self._http_requests.put(
        url, body=data, content_type=content_type, compress=compress
    )

    return TaskInfo(**response.json())

update_documents_in_batches(documents, *, batch_size=1000, primary_key=None, compress=False, concurrency_limit=None) async

Update documents in batches to reduce RAM usage with indexing.

Each batch tries to fill the max_payload_size

Parameters:

Name Type Description Default
documents Sequence[JsonMapping]

List of documents.

required
batch_size int

The number of documents that should be included in each batch. Defaults to 1000.

1000
primary_key str | None

The primary key of the documents. This will be ignored if already set. Defaults to None.

None
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False
concurrency_limit int | None

If set this will limit the number of batches that will be sent concurrently. This can be helpful if you find you are overloading the Meilisearch server with requests. Defaults to None.

None

Returns:

Type Description
list[TaskInfo]

List of update ids to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> documents = [ >>> {"id": 1, "title": "Movie 1", "genre": "comedy"}, >>> {"id": 2, "title": "Movie 2", "genre": "drama"}, >>> ] >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_documents_in_batches(documents)

Source code in meilisearch_python_sdk/index.py
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
async def update_documents_in_batches(
    self,
    documents: Sequence[JsonMapping],
    *,
    batch_size: int = 1000,
    primary_key: str | None = None,
    compress: bool = False,
    concurrency_limit: int | None = None,
) -> list[TaskInfo]:
    """Update documents in batches to reduce RAM usage with indexing.

    Each batch tries to fill the max_payload_size

    Args:
        documents: List of documents.
        batch_size: The number of documents that should be included in each batch.
            Defaults to 1000.
        primary_key: The primary key of the documents. This will be ignored if already set.
            Defaults to None.
        compress: If set to True the data will be sent in gzip format. Defaults to False.
        concurrency_limit: If set this will limit the number of batches that will be sent
            concurrently. This can be helpful if you find you are overloading the Meilisearch
            server with requests. Defaults to None.

    Returns:
        List of update ids to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> documents = [
        >>>     {"id": 1, "title": "Movie 1", "genre": "comedy"},
        >>>     {"id": 2, "title": "Movie 2", "genre": "drama"},
        >>> ]
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_documents_in_batches(documents)
    """
    if concurrency_limit:
        async with asyncio.Semaphore(concurrency_limit):
            if not use_task_groups():
                batches = [
                    self.update_documents(x, primary_key, compress=compress)
                    for x in _batch(documents, batch_size)
                ]
                return await asyncio.gather(*batches)

            async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
                tasks = [
                    tg.create_task(self.update_documents(x, primary_key, compress=compress))
                    for x in _batch(documents, batch_size)
                ]
            return [x.result() for x in tasks]

    if not use_task_groups():
        batches = [
            self.update_documents(x, primary_key, compress=compress)
            for x in _batch(documents, batch_size)
        ]
        return await asyncio.gather(*batches)

    async with asyncio.TaskGroup() as tg:  # type: ignore[attr-defined]
        tasks = [
            tg.create_task(self.update_documents(x, primary_key, compress=compress))
            for x in _batch(documents, batch_size)
        ]
    return [x.result() for x in tasks]

update_embedders(embedders, *, compress=False) async

Update the embedders settings for an index.

Parameters:

Name Type Description Default
embedders Embedders

The embedders value.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> from meilisearch_python_sdk.models.settings import Embedders, UserProvidedEmbedder >>> >>> >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_embedders( >>> Embedders(embedders={"default": UserProvidedEmbedder(dimensions=512)}) >>> )

Source code in meilisearch_python_sdk/index.py
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
async def update_embedders(self, embedders: Embedders, *, compress: bool = False) -> TaskInfo:
    """Update the embedders settings for an index.

    Args:
        embedders: The embedders value.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> from meilisearch_python_sdk.models.settings import Embedders, UserProvidedEmbedder
        >>>
        >>>
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_embedders(
        >>>         Embedders(embedders={"default": UserProvidedEmbedder(dimensions=512)})
        >>>     )
    """
    payload = {}
    for key, embedder in embedders.embedders.items():
        payload[key] = {
            k: v
            for k, v in embedder.model_dump(by_alias=True, exclude_none=True).items()
            if v is not None
        }

    response = await self._http_requests.patch(
        f"{self._settings_url}/embedders", payload, compress=compress
    )

    return TaskInfo(**response.json())

update_faceting(faceting, *, compress=False) async

Partially update the faceting settings for an index.

Parameters:

Name Type Description Default
faceting Faceting

Faceting values.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_faceting(faceting=Faceting(max_values_per_facet=100))

Source code in meilisearch_python_sdk/index.py
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
async def update_faceting(self, faceting: Faceting, *, compress: bool = False) -> TaskInfo:
    """Partially update the faceting settings for an index.

    Args:
        faceting: Faceting values.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_faceting(faceting=Faceting(max_values_per_facet=100))
    """
    response = await self._http_requests.patch(
        f"{self._settings_url}/faceting",
        faceting.model_dump(by_alias=True),
        compress=compress,
    )

    return TaskInfo(**response.json())

update_filterable_attributes(body, *, compress=False) async

Update filterable attributes of the index.

Parameters:

Name Type Description Default
body list[str]

List containing the filterable attributes of the index.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_filterable_attributes(["genre", "director"])

Source code in meilisearch_python_sdk/index.py
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
async def update_filterable_attributes(
    self, body: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update filterable attributes of the index.

    Args:
        body: List containing the filterable attributes of the index.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_filterable_attributes(["genre", "director"])
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/filterable-attributes", body, compress=compress
    )

    return TaskInfo(**response.json())

update_localized_attributes(localized_attributes, *, compress=False) async

Update the localized attributes settings for an index.

Parameters:

Name Type Description Default
localized_attributes list[LocalizedAttributes]

The localized attributes value.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> from meilisearch_python_sdk.models.settings import LocalizedAttributes >>> >>> >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_localized_attributes([ >>> LocalizedAttributes(locales=["eng", "spa"], attribute_patterns=[""]), >>> LocalizedAttributes(locales=["ita"], attribute_patterns=["_it"]), >>> ])

Source code in meilisearch_python_sdk/index.py
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
async def update_localized_attributes(
    self, localized_attributes: list[LocalizedAttributes], *, compress: bool = False
) -> TaskInfo:
    """Update the localized attributes settings for an index.

    Args:
        localized_attributes: The localized attributes value.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> from meilisearch_python_sdk.models.settings import LocalizedAttributes
        >>>
        >>>
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_localized_attributes([
        >>>         LocalizedAttributes(locales=["eng", "spa"], attribute_patterns=["*"]),
        >>>         LocalizedAttributes(locales=["ita"], attribute_patterns=["*_it"]),
        >>>     ])
    """
    payload = [x.model_dump(by_alias=True) for x in localized_attributes]
    response = await self._http_requests.put(
        f"{self._settings_url}/localized-attributes", payload, compress=compress
    )

    return TaskInfo(**response.json())

update_non_separator_tokens(non_separator_tokens, *, compress=False) async

Update the non-separator tokens settings for an index.

Parameters:

Name Type Description Default
non_separator_tokens list[str]

List of non-separator tokens.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_non_separator_tokens(non_separator_tokens=["@", "#")

Source code in meilisearch_python_sdk/index.py
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
async def update_non_separator_tokens(
    self, non_separator_tokens: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update the non-separator tokens settings for an index.

    Args:
        non_separator_tokens: List of non-separator tokens.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_non_separator_tokens(non_separator_tokens=["@", "#")
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/non-separator-tokens", non_separator_tokens, compress=compress
    )

    return TaskInfo(**response.json())

update_pagination(settings, *, compress=False) async

Partially update the pagination settings for an index.

Parameters:

Name Type Description Default
settings Pagination

settings for pagination.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> from meilisearch_python_sdk.models.settings import Pagination >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_pagination(settings=Pagination(max_total_hits=123))

Source code in meilisearch_python_sdk/index.py
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
async def update_pagination(self, settings: Pagination, *, compress: bool = False) -> TaskInfo:
    """Partially update the pagination settings for an index.

    Args:
        settings: settings for pagination.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> from meilisearch_python_sdk.models.settings import Pagination
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_pagination(settings=Pagination(max_total_hits=123))
    """
    response = await self._http_requests.patch(
        f"{self._settings_url}/pagination",
        settings.model_dump(by_alias=True),
        compress=compress,
    )

    return TaskInfo(**response.json())

update_proximity_precision(proximity_precision, *, compress=False) async

Update the proximity precision settings for an index.

Parameters:

Name Type Description Default
proximity_precision ProximityPrecision

The proximity precision value.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> from meilisearch_python_sdk.models.settings import ProximityPrecision >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_proximity_precision(ProximityPrecision.BY_ATTRIBUTE)

Source code in meilisearch_python_sdk/index.py
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
async def update_proximity_precision(
    self, proximity_precision: ProximityPrecision, *, compress: bool = False
) -> TaskInfo:
    """Update the proximity precision settings for an index.

    Args:
        proximity_precision: The proximity precision value.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> from meilisearch_python_sdk.models.settings import ProximityPrecision
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_proximity_precision(ProximityPrecision.BY_ATTRIBUTE)
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/proximity-precision",
        proximity_precision.value,
        compress=compress,
    )

    return TaskInfo(**response.json())

update_ranking_rules(ranking_rules, *, compress=False) async

Update ranking rules of the index.

Parameters:

Name Type Description Default
ranking_rules list[str]

List containing the ranking rules.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> ranking_rules=[ >>> "words", >>> "typo", >>> "proximity", >>> "attribute", >>> "sort", >>> "exactness", >>> "release_date:desc", >>> "rank:desc", >>> ], >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_ranking_rules(ranking_rules)

Source code in meilisearch_python_sdk/index.py
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
async def update_ranking_rules(
    self, ranking_rules: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update ranking rules of the index.

    Args:
        ranking_rules: List containing the ranking rules.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> ranking_rules=[
        >>>      "words",
        >>>      "typo",
        >>>      "proximity",
        >>>      "attribute",
        >>>      "sort",
        >>>      "exactness",
        >>>      "release_date:desc",
        >>>      "rank:desc",
        >>> ],
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_ranking_rules(ranking_rules)
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/ranking-rules", ranking_rules, compress=compress
    )

    return TaskInfo(**response.json())

update_search_cutoff_ms(search_cutoff_ms, *, compress=False) async

Update the search cutoff for an index.

Parameters:

Name Type Description Default
search_cutoff_ms int

Integer value of the search cutoff time in ms.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_search_cutoff_ms(100)

Source code in meilisearch_python_sdk/index.py
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
async def update_search_cutoff_ms(
    self, search_cutoff_ms: int, *, compress: bool = False
) -> TaskInfo:
    """Update the search cutoff for an index.

    Args:
        search_cutoff_ms: Integer value of the search cutoff time in ms.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_search_cutoff_ms(100)
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/search-cutoff-ms", search_cutoff_ms, compress=compress
    )

    return TaskInfo(**response.json())

update_searchable_attributes(body, *, compress=False) async

Update searchable attributes of the index.

Parameters:

Name Type Description Default
body list[str]

List containing the searchable attributes.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_searchable_attributes(["title", "description", "genre"])

Source code in meilisearch_python_sdk/index.py
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
async def update_searchable_attributes(
    self, body: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update searchable attributes of the index.

    Args:
        body: List containing the searchable attributes.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_searchable_attributes(["title", "description", "genre"])
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/searchable-attributes", body, compress=compress
    )

    return TaskInfo(**response.json())

update_separator_tokens(separator_tokens, *, compress=False) async

Update the separator tokens settings for an index.

Parameters:

Name Type Description Default
separator_tokens list[str]

List of separator tokens.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_separator_tokens(separator_tokenes=["|", "/")

Source code in meilisearch_python_sdk/index.py
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
async def update_separator_tokens(
    self, separator_tokens: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update the separator tokens settings for an index.

    Args:
        separator_tokens: List of separator tokens.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_separator_tokens(separator_tokenes=["|", "/")
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/separator-tokens", separator_tokens, compress=compress
    )

    return TaskInfo(**response.json())

update_settings(body, *, compress=False) async

Update settings of the index.

Parameters:

Name Type Description Default
body MeilisearchSettings

Settings of the index.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> from meilisearch_python_sdk import MeilisearchSettings >>> new_settings = MeilisearchSettings( >>> synonyms={"wolverine": ["xmen", "logan"], "logan": ["wolverine"]}, >>> stop_words=["the", "a", "an"], >>> ranking_rules=[ >>> "words", >>> "typo", >>> "proximity", >>> "attribute", >>> "sort", >>> "exactness", >>> "release_date:desc", >>> "rank:desc", >>> ], >>> filterable_attributes=["genre", "director"], >>> distinct_attribute="url", >>> searchable_attributes=["title", "description", "genre"], >>> displayed_attributes=["title", "description", "genre", "release_date"], >>> sortable_attributes=["title", "release_date"], >>> ) >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_settings(new_settings)

Source code in meilisearch_python_sdk/index.py
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
async def update_settings(
    self, body: MeilisearchSettings, *, compress: bool = False
) -> TaskInfo:
    """Update settings of the index.

    Args:
        body: Settings of the index.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> from meilisearch_python_sdk import MeilisearchSettings
        >>> new_settings = MeilisearchSettings(
        >>>     synonyms={"wolverine": ["xmen", "logan"], "logan": ["wolverine"]},
        >>>     stop_words=["the", "a", "an"],
        >>>     ranking_rules=[
        >>>         "words",
        >>>         "typo",
        >>>         "proximity",
        >>>         "attribute",
        >>>         "sort",
        >>>         "exactness",
        >>>         "release_date:desc",
        >>>         "rank:desc",
        >>>    ],
        >>>    filterable_attributes=["genre", "director"],
        >>>    distinct_attribute="url",
        >>>    searchable_attributes=["title", "description", "genre"],
        >>>    displayed_attributes=["title", "description", "genre", "release_date"],
        >>>    sortable_attributes=["title", "release_date"],
        >>> )
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_settings(new_settings)
    """
    body_dict = {
        k: v
        for k, v in body.model_dump(by_alias=True, exclude_none=True).items()
        if v is not None
    }
    response = await self._http_requests.patch(self._settings_url, body_dict, compress=compress)

    return TaskInfo(**response.json())

update_sortable_attributes(sortable_attributes, *, compress=False) async

Get sortable attributes of the AsyncIndex.

Parameters:

Name Type Description Default
sortable_attributes list[str]

List of attributes for searching.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_sortable_attributes(["title", "release_date"])

Source code in meilisearch_python_sdk/index.py
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
async def update_sortable_attributes(
    self, sortable_attributes: list[str], *, compress: bool = False
) -> TaskInfo:
    """Get sortable attributes of the AsyncIndex.

    Args:
        sortable_attributes: List of attributes for searching.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_sortable_attributes(["title", "release_date"])
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/sortable-attributes", sortable_attributes, compress=compress
    )

    return TaskInfo(**response.json())

update_stop_words(body, *, compress=False) async

Update stop words of the index.

Parameters:

Name Type Description Default
body list[str]

List containing the stop words of the index.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_stop_words(["the", "a", "an"])

Source code in meilisearch_python_sdk/index.py
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
async def update_stop_words(self, body: list[str], *, compress: bool = False) -> TaskInfo:
    """Update stop words of the index.

    Args:
        body: List containing the stop words of the index.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_stop_words(["the", "a", "an"])
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/stop-words", body, compress=compress
    )

    return TaskInfo(**response.json())

update_synonyms(body, *, compress=False) async

Update synonyms of the index.

Parameters:

Name Type Description Default
body dict[str, list[str]]

The synonyms of the index.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

The details of the task status.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_synonyms( >>> {"wolverine": ["xmen", "logan"], "logan": ["wolverine"]} >>> )

Source code in meilisearch_python_sdk/index.py
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
async def update_synonyms(
    self, body: dict[str, list[str]], *, compress: bool = False
) -> TaskInfo:
    """Update synonyms of the index.

    Args:
        body: The synonyms of the index.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        The details of the task status.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_synonyms(
        >>>         {"wolverine": ["xmen", "logan"], "logan": ["wolverine"]}
        >>>     )
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/synonyms", body, compress=compress
    )

    return TaskInfo(**response.json())

update_typo_tolerance(typo_tolerance, *, compress=False) async

Update typo tolerance.

Parameters:

Name Type Description Default
typo_tolerance TypoTolerance

Typo tolerance settings.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> TypoTolerance(enabled=False) >>> await index.update_typo_tolerance()

Source code in meilisearch_python_sdk/index.py
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
async def update_typo_tolerance(
    self, typo_tolerance: TypoTolerance, *, compress: bool = False
) -> TaskInfo:
    """Update typo tolerance.

    Args:
        typo_tolerance: Typo tolerance settings.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     TypoTolerance(enabled=False)
        >>>     await index.update_typo_tolerance()
    """
    response = await self._http_requests.patch(
        f"{self._settings_url}/typo-tolerance",
        typo_tolerance.model_dump(by_alias=True),
        compress=compress,
    )

    return TaskInfo(**response.json())

update_word_dictionary(dictionary, *, compress=False) async

Update the word dictionary settings for an index.

Parameters:

Name Type Description Default
dictionary list[str]

List of dictionary values.

required
compress bool

If set to True the data will be sent in gzip format. Defaults to False.

False

Returns:

Type Description
TaskInfo

Task to track the action.

Raises:

Type Description
MeilisearchCommunicationError

If there was an error communicating with the server.

MeilisearchApiError

If the Meilisearch API returned an error.

Examples >>> from meilisearch_python_sdk import AsyncClient >>> async with AsyncClient("http://localhost.com", "masterKey") as client: >>> index = client.index("movies") >>> await index.update_word_dictionary(dictionary=["S.O.S", "S.O")

Source code in meilisearch_python_sdk/index.py
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
async def update_word_dictionary(
    self, dictionary: list[str], *, compress: bool = False
) -> TaskInfo:
    """Update the word dictionary settings for an index.

    Args:
        dictionary: List of dictionary values.
        compress: If set to True the data will be sent in gzip format. Defaults to False.

    Returns:
        Task to track the action.

    Raises:
        MeilisearchCommunicationError: If there was an error communicating with the server.
        MeilisearchApiError: If the Meilisearch API returned an error.

    Examples
        >>> from meilisearch_python_sdk import AsyncClient
        >>> async with AsyncClient("http://localhost.com", "masterKey") as client:
        >>>     index = client.index("movies")
        >>>     await index.update_word_dictionary(dictionary=["S.O.S", "S.O")
    """
    response = await self._http_requests.put(
        f"{self._settings_url}/dictionary", dictionary, compress=compress
    )

    return TaskInfo(**response.json())